MATLAB EXPO 2017

Targeting Motor Control Algorithms to System-on-Chip Devices

Pierre Nowodzienski
Punch Powertrain develops complex SoC-based motor control

- Powertrains for hybrid and electric vehicles
- Need to increase power density and efficiency at a reduced cost
 - Integrate motor and power electronics in the transmission
- New switched reluctance motor
 - Fast: 2x the speed of their previous motor
 - Target to a Xilinx® Zynq® SoC 7045 device
 - Complex: 4 different control strategies
- Needed to get to market quickly
- No experience designing FPGAs!

- Designed integrated E-drive: Motor, power electronics and software
- 4 different control strategies implemented
- Done in 1.5 years with 2FTE’s
- Models reusable for production
- Smooth integration and validation due to development process – thorough validation before electronics are produced and put in the testbench

Link to video

MATLAB EXPO 2017
Key trend: Increasing demands from motor drives

- Advanced algorithms require faster computing performance.
 - Field-Oriented Control
 - Sensorless motor control
 - Vibration detection and suppression
 - Multi-axis control
What’s a SoC?
Key Trend: SoCs are now used in 36% of new FPGA projects

Challenges in using SoCs for Motor and Power Control

- Integration requires collaboration
- Validation of design specifications with limits on access to test hardware
- How to make design decisions?
Why use Model-Based Design to develop motor control applications on SoCs?

- Enables early validation of specifications using simulation months before hardware is available.
- Dramatically improves design team collaboration and designer productivity by using a single design environment.
- Reduces hardware testing time by 5x by shifting design from lab to the desktop.
ZedBoard

Zynq SoC (XC7Z020)

FMC module: control board + low-voltage board

Load motor

Mechanical coupler

Motor under test (with encoder)
Field-Oriented Control of Velocity
Hardware/Software Test Bench

Copyright 2015-2017 The MathWorks, Inc.
Hardware/software partitioning

Target to ARM

Target to Programmable Logic
Conceptual workflow targeting SoCs

System Simulation Test Bench

- Algorithm C Model
- Algorithm HDL Model
- Model of Motor & Dyno

Linux / VxWorks Reference Framework
- Algorithm C Code
- Algorithm HDL Code

Programmable Logic Reference Framework
- Algorithm HDL Code

SoC Hard Processor
- Algorithm C Code
- Algorithm HDL Code

SoC Programmable Logic
- Algorithm HDL Code

Motor & Dyno Hardware

Embedded System

MATLAB EXPO 2017
Code Generation
Field-Oriented Control of Velocity
Zynq ARM Deployment for AD-FMCMOTCON2
3T Develops Robot Emergency Braking System with Model-Based Design

Challenge
Design and implement a robot emergency braking system with minimal hardware testing

Solution
Model-Based Design with Simulink and HDL Coder to model, verify, and implement the controller

Results
- Cleanroom time reduced from weeks to days
- Late requirement changes rapidly implemented
- Complex bug resolved in one day

“With Simulink and HDL Coder we eliminated programming errors and automated delay balancing, pipelining, and other tedious and error-prone tasks. As a result, we were able to easily and quickly implement change requests from our customer and reduce time-to-market.”

Ronald van der Meer
3T

Link to user story

MATLAB EXPO 2017
Why use Model-Based Design to develop motor control applications on SoCs?

- Enables early validation of specifications using simulation months before hardware is available.

- Dramatically improves design team collaboration and designer productivity by using a single design environment.

- Reduces hardware testing time by 5x by shifting design from lab to the desktop.
Learn More

- Get an in-depth demo in the Technology Showcase
 - New: see award-winning Native Floating Point in HDL Coder!
- Videos: [HDL Coder: Native Floating Point](#)
- Webinars
 - Prototyping SoC-based Motor Controllers on Intel SoCs
 - How to Build Custom Motor Controllers for Zynq SoCs
- Articles
 - How Modeling Helps Embedded Engineers Develop Applications for SoCs (MATLAB Digest)
 - MATLAB and Simulink Aid HW-SW Codesign of Zynq SoCs (Xcell Software Journal)
- Tutorials:
 - Define and Register Custom Board and Reference Design for SoC Workflow
 - Field-Oriented Control of a Permanent Magnet Synchronous Machine on SoCs