MATLAB EXPO FRANCE

L'IA au service de la simulation des systèmes

Moubarak Gado, MathWorks

System-level Simulation

Systems complexity is increasing

Building complex systems with Model-Based Design (MBD)

AI as a new tool to address modeling and simulation challenges

Improve algorithm accuracy: train AI model using high quality data

Managing complexity: replace algorithms that would be too difficult to design otherwise

Save time: replace models that would be too long to simulate

User stories

AI, simulation and MBD: MATLAB and Simulink for system design workflow

Easy to use interfaces and apps

Domain specific examples

Use AI in your area of expertise without being AI specialist

Common and collaborative workflow

Integrate AI models developed in 3rd party frameworks (TensorFlow, PyTorch, ...)

Where can you integrate AI into Model-Based Design?

Observed (major) trends for AI in simulation

Observed (major) trends for AI in simulation

Observed (major) trends for AI in simulation

Application example: Virtual sensors

What

A software component that mimics the behavior of a physical sensor by leveraging information available from other measurements and estimate the quantity of interest.

When

Physical sensors are impractical, expensive, slow, noisy, unreliable, not feasible, etc.

How

Kalman Filters, Grey-Box Models Lookup tables Time series modeling AI (Machine Learning and Deep Learning)

Application example: Virtual sensors

Application example: Reduced Order Modeling

Data-driven and adaptive methods: feature extraction, selection

Reduced computational time and memory, real-time model updating

Accelerated design process: faster parametric studies and optimization

More time for exploration and iteration: edge cases, alternative evaluation, faster highfidelity simulations

Integration of 2D and 3D models from other tools into system level simulation, enhanced controller design

Perform hardware-in-the-loop testing without complete system hardware

From first principles models to reduced order models

A simplified abstraction of a system, concept, phenomenon

Physics based model

A useful (not perfect) representation using governing laws of nature that embed concepts of time, space and causality.

Explainable and clear physical meaning, Can be parameterized

Reduced Order Model

Techniques that aim to simplify the original high-fidelity model in a lowerdimensional approximation and extracting most relevant features

Can run faster

From first principles models to reduced order models

Data-driven vs. first-principles modeling

Data-driven models and first-principles models can co-exist

DATA-DRIVEN MODELS

Statistics, optimization, AI

FIRST-PRINCIPLES MODELS

Physics, math, domain knowledge

Case study: ROM of engine model

HIGH FIDELITY MODEL

Challenges with AI and Simulation for designing complex systems

AI model integration

Choosing best Al technique

How to choose the right Al techniques and algorithms?

Moving from Prototype to production is timeconsuming

How can I deploy easily on embedded device easily and get to production faster ?

Some teams are using TensorFlow and PyTorch, other are using MATLAB and Simulink. How can the teams work together?

Challenges

Data

Data preparation is time consuming

Errors and uncertainties

Can I quantify uncertainties Quantitying errors and uncertainties?

Managing trade-off

How to balance trade-off between complexity and fidelity of the reduced model ?

Model validation and verification

How to validate and verify the AI model and its predictions

MATLAB/Simulink for AI and complex system design

Over 500+ examples using AI for domain-specific applications Fast and easy experimentation: train and quickly compare different AI models

Choose the best AI technique not only for design, but also for deployment efficiency on intended system

Specific tools to save time in every stage of design process

With Simulink, you can integrate easily your AI model (MATLAB, TensorFlow, PyTorch) into the overall simulation environment

Systematically test your model by simulating different test scenario before deploying to production

MATLAB has a growing list of Verification, validation and explanaible AI functionality

Automatically generate source for embedded AI (CPUs, GPUs or FPGAs)

Al-driven system design workflow

AI workflow – What technique to Consider?

Al-driven system design

MATLAB is a Data Manipulation Environment

Spend less time preprocessing and labeling your data

Extract useful features from raw data

Data Simulation & Validation Use Simulink and Simscape to generate realistic data or build Digital Twin

Use MATLAB and Simulink to create environment models for training agents (Reinforcement Learning)

Feature extraction

Time series

Signal processing techniques Wavelet Time, frequency, time/frequency transformation

Images

Deep Learning is now the state of the art Specialized feature extraction techniques (HOG, SURF, LBP, ...)

Domain specific feature extraction techniques

Predictive Maintenance Toolbox DiagnosticFeatureDesigner App

Audio Toolbox audioFeatureExtractor

Text Analytics Toolbox

Example: Reduced order modeling Design of Experiments & synthetic Data Generation

DoE = 512×3 table EngTrqReq EngSpdR... SpkAdvOfst 60 2000 -30 1 2 128 2500 15 3 94 2750 8 4 111 2875 -19 5 77 2625 -11 6 144 2125 4 7 85 2563 -21 8 119 3313 -28 9 68 21 2938 Vary model parameters Run Log data simulation Input features Engine speed (RPM) Ignition timing Throttle position Wastegate valve Response

Engine Torque

Al-driven system design

Al modeling Multiple approaches

Start with a complete set of algorithms, pre-built models and domain specific examples

Increase productivity using Apps for design and analysis

Deep Network Designer

app to build, visualize, and edit deep learning networks

Machine Learning Apps to train machine Learning Models

Reinforcement Learning Designer app to design, train, and simulate agents for existing environments

• • •			Exp	eriment Manager					
EXPERIMENT MANAGER									0
Development	Training Confur Plot Matrix REVIEW RESULT	ion Filter Co	iort *						
- (B) DigitsClassifier		Costena Torreg I							
• 🗸 Baseline Establishment	Result Details								
Sweep Initial Learning Rate									7/16 Trials
Baseline run Asseline Tuning					Complete 7 Running 1	A 1	Stopped 0 Dueued 8	Car	or 0 nceled 0
Result1 (Running)									
Larger Initial Learning Rate Range Sweep Learning Rate Corw Size and									
Add Conv-Batch-ReLu Banks	Trial Status	Progress		lapsed Time	myInitialLearn	convFilterSize	Training Accu	Training Losa	Validation A
Vary Filter Size of First Corw2D Layer	1 Comp	iete and	100.0%	0 hr 0 min 16 sec	5,00000-6	3.9000	12.5000	2.6443	: 3
Tran Valance Spit Skry	2 Comp	iefe	100.0%	0 hr 0 min 15 sec	1.0000#-5	3.0000	25.7813	2.1228	2
	3 😂 Compi	ieta 🗖	100.0%	0 hr 0 min 14 sec	0.0001	3.0000	64.8438	1.0878	1 4
	4 Comp	lata 🖉	100.0%	0 hr 0 min 16 sec	0.0005	3,000	90.6250	0.4643	1 4
	5 📀 Compl	iate and	100.0%	0 hr 0 min 15 sec	1.0000e-6	4.0000	11.7188	2.4967	
	6 🥥 Compl	ieta 🛛	100.0%	0 hr 0 min 15 sec	1,0000e-5	4.0000	23,4375	2,1213	1 1
	7 S Compi	eta 🖉	100.0%	0 hr 0 min 17 sec	0.0001	4.0000		1.0283	1 3
	8 O Runni		30.7%	0 hr 0 min 4 sec	0.0005	4.0000			
	9 🗄 Queue		0.0%		1.0000e-6	5.0000			
	10 SE Queur		0.0%		1.0000e-5	5.0000			
	11 🗄 Queue		0.0%		0.0001	5.0000			
	12 E Queue		0.0%		0.0005	5.0000			
	13 🗄 Queut		0.0%		1.0000e-6	6.0000			
	14 🔄 Queue		0.0%		1.0000e-5	6.0000			
	15 III Queue		0.0%		0.0001	6.0000			
	16 🗄 Queue	d 📕	0.0%		0.0005	6.0000			

Experiment Manager app to manage multiple deep learning experiments, analyze and compare results and code

Design your AI model

Run multiple **experiments**, compare results and optimize your AI model

Example: engine model AI based ROM using LSTM

34

Example: engine model AI based ROM using LSTM

Al modelling Multiple approaches

MATLAB interoperates with other frameworks

Example: Import trained network from TensorFlow


```
YPred = predict(net, X);
```

```
Ts = 0.1;
t = Ts*(0:size(X,2)-1)';
plot(t,YPred); hold on, plot(t,Y); hold off
xlabel("Time (s)")
ylabel("y")
```


Al-driven system design

Al is part of a larger system

Integrate your AI model into Simulink

Use Al libraries blocks (recommended workflow)

Deep Learning Toolbox Statistics and Machine Learning Toolbox System identification Toolbox Computer Vision Toolbox Audio Toolbox

What if I have Python AI models ?

Whether you use MATLAB or not, Simulink is an enabler of your Al model

Use result of simulation to inform model selection and use variants to compare design options

Test scenarios that would be difficult, expensive, or dangerous to run on hardware or in a physical environment

Experiment with multiple AI models of an algorithm and rapidly compare tradeoffs in accuracy, model size and on-device performance.

Uncover system integration issues earlier

Example: Al-based engine reduced-order-model

Integrate AI models into Simulink for system-level simulation and test

Help

Integration of trained AI models into Simulink

Path	Time Plot (Dark Band = Self Time)	Total Time (s)	Self Time (s)	Number of Calls
AI_ROM		49.440	45.732	142760
LSTM		2.643	0.000	0
NLARX Sigmoid		0.284	0.000	0
Neural State Space		0.195	0.000	0
Scope		0.188	0.188	23795
From Workspace2		0.161	0.161	23794
Demux		0.128	0.128	95184
From Workspace1		0.054	0.054	23794
Prediction_LSTM		0.040	0.040	23794
Prediction_NeuralSS		0.006	0.006	23794
Prediction_NLARXSigmoid		0.005	0.005	23794
Prediction_NLARXSVM		0.004	0.004	23794
> NLARX SVM		0.001	0.000	0
> Normalize		0.000	0.000	0
Cast To Double		0.000	0.000	3
> Denormalize		0.000	0.000	0

Understanding and Verifying your AI models

Understanding and Verifying your AI models

Interpretability methods

Understanding and Verifying your AI models

Verified AI: Interpretable, explainable

Neural Network Verification R2022b

Deep Learning Toolbox Verification Library by MathWorks Deep Learning Toolbox Team STAFF Verify and test robustness of deep learning networks https://www.mathworks.com/help/deeplearning/verification.html

Why MATLAB for Explainable AI?

- Explainable AI plays an important role in Verification and Validation of AI-enabled systems
- MATLAB has a growing list of Explainable AI functionality
 - There is no one-size-fits-all method
- MathWorks is actively engaging with research groups and certification bodies

EUROCAE WG-114 / SAE G-34 Standardization Working Group "Artificial Intelligence in Aviation"

Al-driven system design

From development to production

Save time and reduce errors

Simplify process, eliminate compatibility issues, deploy on different platforms

End-to-end workflow for designing, testing, and deploying

Deploy to many targets with zero coding errors

NC^{45.71} FPS

Code generation workflows for embedded target

Getting closer to real hardware prototype

Development

Production

Get closer to real hardware

System-level test: Processor-in-the-loop simulation

Deploy and validate your embedded AI algorithm on real production processor

System-level test: Hardware-in-the-loop simulation

Engine AI-based ROM example

Increasing software quality with MATLAB Test

Link to Requirements Verification

			🖥 🔏 🖷 兴 🖛
New Open A Import quirement Set	Load Profile Editor Add Promote Requirement - Demote Requirement - Demot	uirement (disabled because sort is enabled) iirement (disabled because sort is enabled) QUIREMENTS	Image: Clear Issue Add Image: Clear Issue Cl
Index	Summary	Implemented Verified	▼ Properties
XRPD_System			
XRPD_SystemMLComponent			Type: Functional V Index: 1.3.3.2
i 1	ML component requirement for X-Ray Pneumonia Detector (XRPD)		Custom ID: XRPD_ML_3_2
1.1	Introduction		Summary: ML component test precision
1.2	ML component description		
✔ 🗐 1.3	ML component requirements		Description Rationale
✔ 📄 1.3.1	ML component input		
E 1.3.1.1	ML component input should be 28x28x1		Accuracy of the trained model must be above 90% (with test data)
1.3.1.2	ML component input data (training) should be 28x28x1		
1.3.1.3	ML component input data (validation) should be 28x28x1		
≣ 1.3.1.4	ML component input data (test) should be 28x28x1		
✔ 📄 1.3.2	ML component output		
1.3.2.1	ML component output should be 2		
1.3.2.2	ML component output labels should be 'normal' or 'pneumonia'		
✔ 📄 1.3.3	ML component accuracy		
1.3.3.1	ML component training precision		Keywords:
1.3.3.2	ML component test precision		Revision information:
1.3.3.3	ML component avoid overfitting		
1.3.3.4	ML component out-of-distribution detection		▼ Links
1.3.4	ML component latency		🔲 🖙 Implemented by:
✔ 🗐 1.3.5	ML component robustness		238897.723.1 in evaluateModelAccuracy.m
1.3.5.1	ML component robustness 1% perturbation		□ ⇒ Refines:
1.3.5.2	ML component robustness 0.5% perturbation		XRPD_ML_3 ML component accuracy
≣ 1.3.5.3	ML component robustness 0.1% perturbation		□
1.3.6	ML component implementation		

Simulink Test

Develop, manage, and execute simulation-based tests

Test Manager

- Author, manage, organize tests
- Execute simulation, equivalence and baseline tests
- Review, export, report

Test Harnesses

- Isolate Component Under Test
- Synchronized, simulation test environment

Main Model

Signal spec.

and routing

Examples

1 vehicle speed speed

Test Harness

2

throttle

vehicle mph

•

Signal spec

and routing

gear

.

shift_logic

Ora Lapt Birts-to

Test Authoring

- Specify test inputs, expected outputs, and tolerances
- Construct complex test sequences and assessments

How to optimized performance in hardware constrained environment?

How to optimized performance in hardware constrained environment?

Projection

Project learnable parameters into a lower dimensional space

Classification

Object Detection

Pruned Network

Original Network

AI model compression workflow

61

Conclusion

- Many promising application in the intersection between AI and Simulation
- Combining AI and simulation for designing complex system is all about tradeoffs
- MATLAB and Simulink
 - Run simulation of AI model at the system level and collect metric
 - Refine model and implement the optimal AI technique
 - Balance AI accuracy and deployment efficiency
 - One toolchain for seamless interaction between AI and simulation
 - Select and implement the optimal AI technique balan

Key takeaways

Thank you!

Q&A