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System-level Simulation
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Systems complexity Is increasing

Component
A \
G

Component B ===

/
Increasing system complexity

Component
D
\ Component
XYZ

Common tools used for designing
systems
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Building complex systems with Model-Based Design (MBD)

Modeling and simulation

= J[ =

Research Requirements

0 Continuous test Rapid @5
E and Verlflcatlon ) pl’OtOtyplng Em 'é :d.d ] [ RCP&;—HLSfmS J

Generation of outputs
Production of code
Reports
Certification artifacts
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Al as a new tool to address modeling and simulation challenges

Improve algorithm accuracy:
train Al model using high quality data

Managing complexity:
replace algorithms that would be too difficult to design
otherwise

Save time:
replace models that would be too long to simulate




User stories

« & .

Automotive

- AErospace

Mercedes-Benz:
Deep Neural Networks virtual
sensors on ECU

Lockheed Martin:
Deep Learning based fleet
performance optimization

’ b -
Automotive

Food and

beverage

7 Robotics &
¥

_ Smart
** manufacturing

4\ MathWorks

ASTRI:
Al driven digital twin for robotic
welding system

Medical

Vitesco:
Reinforcement Learning based
controller for powertrain control

Coca-Cola:

Virtual Sensor with Machine Learning

to improve beverage diagnostics

Dutch Epilepsy Clinics Foundation:
Diagnosis of epileptic seizures using

Machine Learning

e S

Automotive

Renault:
Estimating Nox emission with
Deep Learning

g= Autonomous

Vehicle

Monarch tractor:
Al for camera and sensor data
analysis in smart electric tractor

Plug Power:
Al based predictive model for
fuel cell
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Al, simulation and MBD: MATLAB and Simulink for system design
workflow

Easy to use interfaces and apps

=z}l Domain specific examples

% Use Al in your area of expertise without being Al specialist

Common and collaborative workflow

B3 Integrate Al models developed in 3" party frameworks (TensorFlow,
“8) pyTorch, ...)
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Where can you integrate Al into Model-Based Design?

e N N N N ™

. . System
Functionality and ; ; -
Architecture Design Implementation Integration

and Test

Requirements

Continuous Testing, Verification, and Validation

Requirements verification Early design verification Virtual integration testing (SIL/PIL/HIL) Physical System Testing
f System \
Subsystem
models Physical hardware
System Architecture Physics-based
Behavior models <= Al & Data-driven
Functional spec : \
¥ ":/ \\L Component and
i <[ > System Acceptance
X g Algorithms @ [ ¥ Testi P
- [ esting
T L.—j‘\\@//'
N \ / |
) ¥ (—)
Environmentmodel <= Environmentmodel Real Environment

AN NG

2 categories in general l—l__l_.l_l

Digital Thread

Al for component modeling Al for algorithm development

= Speeding up desktop and HIL = Virtual sensor modeling
simulations

= Sensor fusion

= Modeling component dynamics from
data when first-principles models
cannot be obtained

Object detection



Observed (major) trends for Al in simulation

:

s

5

Data Component Algorithm
synthesis modeling modeling

Use Al for realistic data
generation

Use Al for physical
environment modeling,
Reduced order models

Virtual Sensors,
Predictive maintenance,
ADAS, Signal
Processing, Natural
Language Processing,
Electrification

4\ MathWorks

Control systems, planning,
decision making

Advanced control
algorithms, end to end
modeling

10
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Observed (major) trends for Al in simulation

G Data Use Al (generative Al models like GANs, diffusion models, ...) to generate realistic data. Use
Z synthesis Al based digital twin to generate data for what if analysis

@, Algorithm
.'y modeling

Use Al to train a classification algorithm and use automatic code generation tools to
deploy it on embedded hardware.

Control systems, planning,

decision making Use Reinforcement Learning (where simulation and Al combined) to build an end-to-end

solution that is self-tuned through a training process

Component .
modeling \ Use Al to train a reduced order model. You can use leverage Al-based ROM early in design
process and high-fidelity model later




Observed (major) trends for Al in simulation

3. Reinforcement learning

ZAN

Planning/ ] f
Scheduling J L Control

4\ MathWorks

1. Reduced
Order Model

]
)

( Measurement/ ]

4. Data
synthesis

L Perception J

2. Virtual Sensors

12
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Application example: Virtual sensors

What

A software component that mimics the
behavior of a physical sensor by
leveraging information available from
other measurements and estimate the
guantity of interest.

When

Physical sensors are
impractical, expensive,
slow, noisy, unreliable, not
feasible, etc.

Sensor wvalue estimated

How
Kalman Filters, Grey-Box Models
Lookup tables
Time series modeling
Al (Machine Learning and Deep
Learning)

13
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Application example: Virtual sensors

Industries Applications
Automotive &

Medical devices “'0'”' Virtual Sensors
Aerospace x .-

Industrial Automation and
Machinery

@ Control systems

@BB Electrification

| /\.P Fault detection and
E ducti ,L Predictive maintenance
nergy production |

)!:_5 User Story

Poclain Hydraulics:
Soft Sensors to measure Motor Temperature in
real time using Deep Learning

14
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Case study
K2

| need to provide other teams with good
trade-off models for faster simulation reuse

SIMULINK'

| 6 6
Passenger Car

Engine model
Inputs Outputs > — 3 de?/gll:::dezein
Engine speed (RPM) D =) Engine Torque ) op
Ignition timing F= I | third-party
Throttle position a2

tools (e.g.
Wastegate valve GT-POWER)

Simscape
Powertrain Blockset
Vehicle Dynamics Blockset

Al for component modeling

Replacing a first-principles engine model with an
Al-based Reduced Order Model

15
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Application example: Reduced Order Modeling

Data-driven and adaptive methods: feature extraction, selection

% Reduced computational time and memory, real-time model updating

\J

[—j Accelerated design process: faster parametric studies and optimization

101
010

More time for exploration and iteration: edge cases, alternative evaluation, faster high-
fidelity simulations

& Integration of 2D and 3D models from other tools into system level simulation, enhanced
controller design

gB Perform hardware-in-the-loop testing without complete system hardware

16
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From first principles models to reduced order models

What is a model?
A simplified abstraction of a system, concept, phenomenon

—> &

Physics based model Reduced Order Model

A useful (not perfect) representation using Techniques that aim to simplify the
governing laws of nature that embed concepts of original high-fidelity model in a lower-
time, space and causality. dimensional approximation and

extracting most relevant features

Explainable and clear physical meaning, Can run faster
Can be parameterized

17



From first principles models to reduced order models

&

Reduced Order Model

g Physics based reduction models

+] = -
Model based technigues
v[x] .

Q Nonlinear models that are linearized at

given operating points

.| Data driven approaches (curve fitting,
7> lookup table, Al based models)

&\ MathWorks
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Data-driven vs. first-principles modeling

Data-driven models and first-principles models can co-exist

—

Component B

4\ MathWorks

FIRST-PRINCIPLES MODELS
Physics, math, domain knowledge

WHITE BOX

System
~
DATA-DRIVEN MODELS
Statistics, optimization, Al
BLACK BOX GREY BOX
' AI-BASED " PARAMETER ESTIMATION /

* Machine learning
deep learning

* Reinforcement
learning

HYBRID MODELS

T, = ‘%J: +Kk(yk —Ci‘;)

* Kalman estimator L
» System identification Predict
* Regression

——
Update

PHYSICS BASED
* Systems/components
(electrical, mechanical,
algorithms, etc.)

« Can integrate models from

other tools such as FEM

19
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Case study: ROM of engine model

HIGH FIDELITY MODEL

SIMULINK

Environment

(m/s)
+ I(m/SI Visualization
e s i e S—— Car
Control llers

iy tach REDUCED ORDER MODEL

SIMUI-INK Environment
LIATEEN o 199 o
i | { '
lorerg

3| Driver
Passenger Car
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Challenges with Al and Simulation for designing complex systems

Al model

integration

Some teams are using TensorFlow and PyTorch,

Choosing best Al other are using MATLAB and Simulink. How can the
technique teams work together? Data
How to choose the right Al Data preparation is
techniques and algorithms? I time consuming

X

Moving from Prototype to

S Errors and
roduction is time- 2@ o
P : | uncertainties
consuming
How can | deploy easily on embedded Chal |enge S Can | quantify uncertainties
device easily and get to production faster ? Quantitying errors and uncertainties?

Model validation
and verification

Managing trade-off

How to balance trade-off between complexity How to validate and verify the
and fidelity of the reduced model ? Al model and its predictions 21
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MATLAB/Simulink for Al and complex system design

Over 500+ examples using Al for domain-specific applications

Choosing best Al technique : . ) . :
N9 ' g Fast and easy experimentation: train and quickly compare different Al

models
Choose the best Al technique not only for design, but also for deployment
efficiency on intended system

Managing trade-off

Data I||II|‘|I Specific tools to save time in every stage of design process

Al model integration With Simulink, you can integrate easily your Al model (MATLAB,
4+ @@ (, TensorFlow, PyTorch) into the overall simulation environment

Model validation and _ _ _ _ _
Systematically test your model by simulating different test scenario

verification . .
@ before deploying to production
MATLAB has a growing list of Verification, validation and explanaible Al

Errors and uncertainties functionality

Development to production 8 ,
Giesio Automatically generate source for embedded Al (CPUs, GPUs or FPGASs)

made easy

22
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Al-driven system design workflow

Data Preparation Al Modeling

Data cleansing and
preparation

Q Human insight

Simulation-
generated data

Model design and
tuning

c2ca Hardware

C3Ca accelerated training

* Interoperability

a )

Integration with
complex systems

-D&I System simulation

— x System verification
—+ and validation

Simulation & Test Deployment

3

ols8lo

E] Embedded devices

ﬁ]% Enterprise systems

¢ Edge, cloud,
desktop

23



Al workflow — What technique to Consider?

&J| Data Suitability

% Training Data

Training Time

4 Interpretability

i Footprint /
Power Consumption

Accuracy Potential

Tabular

100s

Secon

Micro

Goo

Machine Learning

Il

Images / Video
Time Series / Text

Deep Neural Networks

4\ MathWorks
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Al-driven system design

|||||\|||

Al Modeling Simulation & Test Deployment

r )
4
o
»i ol18810
\ J
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MATLAB is a Data Manipulation Environment

e Aoy P

Spend less time Extract useful features  Data Simulation & Validation
preprocessing and from raw data Use Simulink and Simscape
labeling your data to generate realistic data or

build Digital Twin

eeeeeee

?@»

Use MATLAB and
Simulink to create
environment models for
training agents
(Reinforcement Learning)

Walking Robot: Reinforcement Learning (2-D)

M rew
Caculate Rewa
mmmmmmm D-j Walking Robot
P meas isdane | P isdone
uuuuuuu ve
‘Check i Done Reward

26
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Feature extraction

M

Time series Images

Signal processing techniques Deep Learning is now the state of the art
Wavelet Specialized feature extraction techniques
Time, frequency, time/frequency transformation (HOG, SURF, LBP, ...)

Domain specific P“

feature extraction
techniques

Predictive Maintenance Toolbox Audio Toolbox Text Analytics Toolbox
DiagnosticFeatureDesigner App  audioFeatureExtractor

27
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Example: Reduced order modeling
Design of Experiments & synthetic Data Generation

DoE =
LIVE EDITOR INSERT
En gTrq Req En gSde‘ .. stAdvofst Normal v = [é 4 Refactor v EJ [E] section Break (> @5
[ Find « BIUM % & B Run and Advance
Text Code Control Task Run Run  Step Stop
1 60 2000 =30 [l Bookmark v : - v [ e Section {2 Run to End
VIGATE TEXT CODE SECTION RUN =
1 1  warias » -
2 28 2500 5 /MATLAB/aI-wilh-mhd-rJ Elmulation Masger= Amih x] @ | x
SIMULATION MANAGER
3 94 2750 8 ¥ Ees __________° o=
Fls OEH @ & < . O =
4 1 2875 -19 Open Save | StopJob  Simulation L—/ 7| Reuse B
100 15 - Detalls ‘scatter surt ‘Window =5
5 77 2625 1 EngTrgReq BE  |SMULATIONS iNsPECT RESULTS oFTioNs = B
Simuations || Figure 1 N © | Piot Properties °
6 144 2125 4 e ]
Grid OxOy
7 85 2563 -21 - x-AXIS
Data EngSpdReq =)
8 9 3313 28 x|
9 68 2938 21 ::/ 150! X Limits 2000 |to[4000 | IZAuto
100
o 3
50 EngTraRd ~ Y-AXIS
Data (EngTraReq -
Vary model g o —
z ¥ Limits 0 to|150 | FAuto
i =
arameters e T,
jne model is brought fr s
Data Smulaton Staus___~ |
thworks.com/help/aut Label
thworks.com/help/aut Limits 0 Jo[i | MAu
Colormap [ parula(default) -
ion Type => "Rapid A Colortar [
_Engine_Test.sly
R imulations, 3003 .
u n simulation(DoE, | 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
og data : : e |
imuiation aratiet oo (nn —
S arallel pool (numbe gy arion pETAILS [Running on 32 paratiel workers (Speedup:19.5) 975 R 12sec remaining = "
:09] Checking for - J

:09] Starting Simulink on parallel workers...

:56] Loading project on parallel workers...

:56] Configuring simulation cache folder on parallel workers. ..

:18] Transferring base workspace variables used in the model to parallel workers...

Input features A e R
Engine speed (RPM) |

Ignition timing e
Throttle position ' i, | )
Wastegate valve mE ‘ ’ o

GResponse

O Engine Torque

e Simulation Result ’ &
. ! - % Q |H Zoom: 125% [UTF-8 LF script tn 38 Col 79

28



Al-driven system design

|||||\|||

Al Modeling

4\ MathWorks

Simulation & Test Deployment

r )
4
o
»i ol18810
\ J
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Al modeling
Multiple approaches

Al Modeling

i %

Deployment

s> 8
olsnlo

Build with MATLAB

22

Interoperate with
3rd party
framework

£.0
=\

4\ MathWorks
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Start with a complete set of algorithms, pre-built models and domain
specific examples

Algorithms Flexible modeling Pre-builts models Application specific
approach reference examples

Machine Learning Aud|o . Lidar
Deep Learning Low code or programmatic
Reinforcement Learning r— —_
Predictive Maintenance _E_ = = E Natural Language
Bayesian Optimization - Processing
... and more

Computer Vision

d
o

0
()
()
oo° 0y

choose approach that best suits your ‘

% ?@ &zl needs

Access model from
MATLAB Deep
Learning Model
Hub on Github

31



| 4\ MathWorks

Increase productivity using Apps for design and analysis

D EERRER DDER

{
I
I

Design your Al model A _ _ .
Deep Network Designer Reinforcement Learning

app to build, visualize, and to train machine Learning Designer app
edit deep learning networks Models to design, train, and simulate
agents for existing environments

Run multiple experiments, compare

S Experiment Manager app to manage multiple
results and optimize your Al model deep learning experiments, analyze and

compare results and code 32




Example: engine model Al based ROM using LSTM

Data-driven Reduced Order Model

SIMULINK

Environment

HIGH FIDELITY MODEL

M -
>+ (m/s)
EI |

SIMULINK

M -
|+ (m/s)
EI |

|

Data-Driven
ROM

]_

-[ Static

-[ Dynamic ]—

4\ MathWorks

Look up table
Surface Fitting
etc.

- LSTM

W Neural State Space
/ Neural ODE

o NLARX models

33
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Example: engine model Al based ROM using LSTM

Data-driven Reduced
Order Model

N ’_|HIGH FIDELITY MODEL I n u .t _Fe a -t u r‘ e S
SRS p ¢| Re;ponse
e ﬂ) Engine speed (RPM) Engine Torque
| Ignition timing
REDUCED ORDER MODEL Th r\ottle pos ition
umuuulu - D
b5 E} Wastegate valve
Neural State Space Nonlinear ARX (NLARX)
nonlinear state function (f) Owput Function
' ' T and output function (g) )
160 i i — {x — f(x, u) input  — )
o ﬂ 1 b O \H M | y = g(xu) o .
I output [
"mc. ' N { [y @ @ F
mr w r( J B State Output
network (f) network (g)
: | accuracyResults = Ix2 table accuracyResults = Ix2 table accuracyResults = Ix2 table

0 500 1000 . ® 1500 2000 2500 RMSE RA2 RMSE RA2 RMSE RA2
ime (s,
1 |Test 1.8262 09953 1 |Test 6.2167 0.9443 1 |Test 6.6068 0.9356 34




Al modelling
Multiple approaches

Al Modeling

Simulation & Test Deployment

" 8
OIi0810

Interoperate with
3rd party
framework

.0
=™

4\ MathWorks
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MATLAB interoperates with other frameworks

Interoperate with
3rd party
framework

y :‘ O
Vg

»7

_ 3 y,
& T O PyTorch )
MATLAE | 4mmmmm | TensorFlow ONNX_ |

4 T
MATLAB TensorFlow

O PyTorch }

Convert a
Deep Learning
TensorFlow /
PyTorch / ONNX
model

f

.

Coexecute a
TensorFlow or
PyTorch or any

Python model from
MATLAB

~\

J

4\ MathWorks
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Example: Import trained network from TensorFlow

¥Pred = predict(net, X);

= Istrn_wehicle_engine_rom_tf
variables Ts = 8.1;
|| keras_metadata.pb t = Ts*(@:size(X,2)-1)";
D saved_model.pb piﬂz(:,?j:r.‘ed); htr::ld on, plot(t,Y); hold off
H Xlabe ime )
Import TensorFlow Network into MATLAB ( (s)%)
ylabel("y")
TFModel = "lstm_vehicle_engine_rom_tf";
net = importTensorFlowNetwork({fullfile(projectPath, "models”,TFModel), ...
"Targethetwork", “dlnetwork") 180 ' T ' T ' ' T ' '
Importing the saved model... )
Translating the model, this may take a few minutes... 160 | h i
Finished translation. Assembling network...
Import finished.
= 140 4
net =
dlnetwork with properties:
120 b

Layers: [6%1 nnet.cnn.layer.Layer]

Connections: [5x2 table] =
Learnables: [7%3 table] 100 -
State: [2x3 table]
InputNames: { input_2"}
OutputMames: {'dense_2_ '} ank H
Initialized: 1
View summary with summary. 60 L H
H
40

0 200 400 B0O0 BOO 1000 1200 1400 1600 1800 2000
Time (s)
37
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Al-driven system design

Data Preparation Al Modeling Simulation & Test Deployment

4 A
8

it i
ol8810

L J
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Al Is part of a larger system

Planning/Scheduling Control

SIMULINK -

@
|

Environment

=

(()._

Measurement/perception ]

%3 HAutoparkin

oL A

SIMULATION

b [ L Compere Normal ~ > & ok Dopen ~ g= Stop Time. %
< - - 5

Newd Opanl Sue | SX Lok NAVIGATE  Text _“ I'UM CODE SECTION  Run  Step Stop New (@ Giraey Signal Paiie stop Dats
v v v bt~ : il |~ &eint - | rowser Table - Inspector

FLE TeT RUN a FiLE LIBRARY REVIEW RESUL. =]
< o (5 ol 5 7 « Documents » MATLAB » Examples » R2023b » rl » » M rlAutoParkingValet3D =
B s Drive - S S —_—
5 Live Edor - G L g ® |[%a]AutoParkingValet3D b -
N +18w
\ i i
N Train Agent ()| ROM.-DeepLeamin.. &« ‘Auto Parking Valet Using MPC and RL in 3D Environment
N = | projectTerminate.m
y 78 trainOpts = rlTrainingOptions(... =] [+
N projectStartup.m
§ 7 MaxEpisodes=10000, ... u
NI MaxStepsPerEpisodes200, . .. 4 ((Detafimention Doe e
y 8 ScoreAveragingwindowLength=200, .. . DoE_sbl.m =} Mo
y 82 Plots="training-progress”,... simulation.m | — R
NI StopTrainingCriteria="AverageReward", ... untitled.mbx L B
N ini i o g foae -
N StopTrainingValue=128); AutomaticParkingVa... * ) 0 T —
g —
N -
NI trainingResult = train(agent,env,trainOpts); > ™ ——|»— e
N ‘ »
B "o S
Zoom: 100% UTF-8 [LF [ script n 85 Col 1 -] %

Copyrpt 221 The Mt s
9% T390 f 7% auto(odeds) |
- o x

0 35 40 45 50
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Integrate your Al model into Simulink

I Use Al libraries blocks (recommended workflow)

> Ju @ vp *

fen
MATLAB Function

Use MATLAB Function Blocks

(when no equivalent built-in block)

Deep Learning Toolbox
Statistics and Machine Learning Toolbox

| System identification Toolbox

Computer Vision Toolbox
Audio Toolbox

40
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What if | have Python Al models ?

Model Converter

(Python>MATLAB)
—
1 O PyTorch <

TensorFlow ONNX

> Nu @ v

fen

(Python + MATLAB)

Co-exécution i

MATLAB Function

41
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Whether you use MATLAB or not, Simulink is an enabler of your Al
model

%Use result of simulation to inform model selection and use variants to
- compare design options

A) Test scenarios that would be difficult, expensive, or dangerous to run on
4~ hardware or in a physical environment

Experiment with multiple Al models of an algorithm and rapidly compare
tradeoffs in accuracy, model size and on-device performance.

% Uncover system integration issues earlier

42
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Example: Al-based engine reduced-order-model

oo Rlic)

Integration of trained Al model into Simulink ﬁ System-level simulation

Integrate Al models into Simulink for system-level simulation and test
43



Integration of trained Al models into Simulink

Path Time Plot (Dark Band = Self Time) Total Time (s) Self Time (s) Number of Calls
v!AL_ROM O ) 040 45.732 142760

> LSTM 0 2.643 0.000 0

> NLARX Sigmoid l 0.284 0.000 0

> Neural State Space 0.195 0.000 0
Scope 0.188 0.188 23795
From Workspace2 0.161 0.161 23794
Demux 0.128 0.128 95184
From Workspacel 0.054 0.054 23794
Prediction_LSTM 0.040 0.040 23794
Prediction_NeuralSS 0.006 0.006 23794
Prediction_NLARXSigmoid 0.005 0.005 23794
Prediction_NLARXSVM 0.004 0.004 23794

> NLARX 5VM 0.001 0.000 0

» Normalize 0.000 0.000 0
Cast To Double 0.000 0.000 3

» Denormalize 0.000 0.000 0

4\ MathWorks
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Understanding and Verifying your Al models

Verified Al:

Interpretable,
explainable

4\ MathWorks
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Understanding and Verifying your Al models

|
1 .

o : Regression
= 1
S :
= ! Q Tree Models
[ R

WAV & y 3 . Naive Bayes

- 2
P a Verified Al: E“‘ |
e e ‘ . %% Clustering

Interpretability methods

|
= PCA ;
9 |
S # SNE :
(@)]
m |
% MRMR
o] |
(@]
= g |

4\ MathWorks

Global methods
Post-hoc

|l Predictor Importance
= (trees & ensemble)

Occlusion Sensitivity
CAM, Grad-CAM,
Activations

% Partial Dependence Plot

Fuzzy Logic

46
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Understanding and Verifying your Al models

Neural Pneumonia I
Network Normal
J
Formal Verification
verified unproven violated
WA o 700 " ' perturbation = 0.01;
I Original Networl
: E‘“ 600| | Data Augmented Model XLower = XTest - perturbation;
vV Verified Al:
L Iniz:przmble olisio ® Robust Network . ’
P ¢ g explainable” S 500 XUpper = XTest + perturbation;
aal g
2 400 o
o
. . o
Neu ral Network Venﬂca“on s 200 result = verifyNetworkRobustness(dlnet,...
b E 200 XLower,XUpper,TTest);
2022 g
R20 » I
Deep Learning Toolbox Verification Library 0 - Summar‘y“_‘e-f'ﬂt)
by MathWorks Deep Learning Toolbox Team verfied viclated Hnproven verified 402
Verify and test robustness of deep learning networks ovgna violated 13
https://mww.mathworks.com/help/deeplearning/verification.html Disubuionsco = 34217 unproven 209
In-distribution v/ Out-of-distribution X

FlipLR Contrast

Distribution Score = -209.8641 Distribution Score = -inf

47



https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://www.mathworks.com/help/deeplearning/verification.html

4\ MathWorks

wWhy MATLAB for Explainable Al?

= Explainable Al plays an important role in
Verification and Validation of Al-enabled

systems
- MATLAB has a growing list of Explainable Al - -

functionality

— There is no one-size-fits-all method

- MathWorks is actively engaging
with research groups and
certification bodies a0 A

EUROCAE WG-114 / SAE G-34
Standardization Working Group
“Artificial Intelligence in Aviation”

A

INTERNATIONAL«

48



Al-driven system design

Data Preparation Al Modeling Simulation & Test

r R
it i
L J

Deployment

olaelo

4\ MathWorks
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From development to production

4\ MathWorks

oi18810 % Save time and reduce errors

Simplify process, eliminate compatibility
Issues, deploy on different platforms

End-to-end workflow for designing,
testing, and deploying

50



Deploy to many targets with zero coding errors

m: intel arm
Any CPU OneDNN ARM Compute
No Library Library Library
Needed
>
NVIDIA.
TensorRT and
cuDNN Libraries
x "I Hemauarented ARDUINO
13 TEXAS
INSTRUMENTS
. AMD{1
@ ZYN_OHI snx  Intel

1 R2022a
TensorFlow Lite: Support for TensorFlow Lite

4\ MathWorks

Frame Rate: 111,11
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Code generation workflows for embedded target

Through MATLAB

VSR I

Using apps

b Pid +
IGPU‘ lH i t I

GPU Coder HDL Coder MATLAB Coder

&+
-

MATLAB Coder

CondCen
oo To begin,select your entry-peint hunction(s)

Ganerate code for function: Erer  funct

Using
command line

codegen

Generate generic C++ code through command line for LSTM trained model

% Set Up a Code Generation Configuration Object for a Static Library
cfg = coder.config('1ib');

cfg.GenCodeOnly = true;

cfg.Targetlang = 'C++';

% Set Up a Configuration Object for Deep Learning Code Generation
dlcfg = coder.DeeplearningConfig('none');

% Attach the Deep Learning Configuration Object to the Code Generation Configuration Object
cfg.DeeplearningConfig = dlcfg;

% Generate Source C++ Code by Using codegen
codegen -config cfg netPredictLSTM.m -args {ones(3, 500, 'single')} -d netPredictLSTM Generic -report

codegen options files function -args {func_inputsi} ... -args {func_inputs}

codegen project

Embedded
Coder

Ay
C/C++ Code

LI Y I B

Through Simulink
(more suitable fo

Coder

HDL
Coder

Model blocks nSLPLm- - | gy

Top Model Mode | Accelerator
Setings
WL PREFARE
M1l o
=
[
featureinput regressionoutpu
Predict
]
»
Ready

&
&
-]

Explora

Cpen In New Tab
Qpon In New Window
Cut

Copy

Paste

Comment Through
Comment Out
Uncomment

Find Referenced Variables
Subsystem & Model Reference
Test Hamess.

Observers

Format

Mask

Library Link
Requirements

Lingar Analysis

Design Verifier

Coverage

Wodel Advisor

Metics Dashboard
Co-simulation Numerical Compensation...
Fixed-Point Tool.

Idaniify Modsling Clanss
Model Transformer
CiC++ Code

HOL Code

PLC Code

Rinek Dararsatare Suhaustarst

4\ MathWorks

MBD workflow)

PLC
Coder

X
CtrleC
sV
Ctrd+ShiftsY
CrrlsShifteX

Properties.
Help

8 Embedded Coder Quick Start
4 Code Generation Advisor

i Deploy this Subsystem to Hardware

Export Functions.
Generate S-Funetion 5 2

Havigat




Getting closer to real hardware prototype

aj !

Development Test Production

Get closer to real hardware

4\ MathWorks
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System-level test: Processor-in-the-loop simulation

- al N
SIMULINK
[ Al model ]
iInput output
S ———

Deployed code communicates
with simulated plant
(host computer)

\_
Code generation
from Al algorithm

Deploy and validate your embedded Al algorithm on real production processor

4\ MathWorks

54



4\ MathWorks

System-level test: Hardware-in-the-loop simulation

SIMULINK

Environmen t >
(m/s)
_’| : I('"/S) Visualization
EI *
a r

. J
" . - g o ( R
- F s R . 3 | Code generation Code generation
I - e i from algorithm from plant model
i « Connect to HIL Simulator Bl
5 &Run Simulation ;' : =
StE — = )
L b l— J |/O [}
—— ‘ Target platform Real-time computer
) “ﬂm I I =
ﬂ N

Engine Al-based ROM example
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Increasing software quality with MATLAB Test

PROJECT x
n o= ] &8 | (=)
« 8 H % & W K & ¢ B &
New Open Save Test Dopendoncy Labels  Shoricuts Pull  Push Branch Commit
- - - Manager  Analyzer
FILE PROJECT TOOLS SOURCE CONTROL
1 0 2 05 a/ MATLAB Drive > A_Sample_Project
Eror Warning nfo ¥ CURRENT FOLDER o | | Testim x|| Test Manager x +
¥ CURRENT PROJECT O |[MTessinCumentProet ~ | D> 2 M B @& -
[ i A_Sample_Project | 1
overage 3 A_Samplo_Projoct pd Test Manager: All Tests in Current Project
Functon 100 [ Sources
- [est Managefs- 70 s ;
Decsion . 06 T UnitTests 50 12 8
Coneition . 57 = Total Tests Passed Failed Incomplete
uene [ 53.3%

Code quality dashboard

Test Details Expand Al [search " passed x faod x incomploto x Moro Fitors« +
Tost Diagnostic Requirements Time
W oPossed  857% v WORKSPACE o » © SmokeTestasmoke Test R UL R Backend 1s

W Failed 143%

B ncompete 0% » © SmokeTests/smokeTest2. m R_Backend 1s
NotRun 0% » © UntTestsbackendTests m R Backend 15
~ @ UnitTesistuiTests o R U 2s
Requirements @ uiTesta (s=1+d) R U 15
© uiTesth (s=14asb) Line 27: Valdation Fased RU 1s
W Passed §8.2% 2 uilesth R_V

W Faied 136%
W NotRun 0%
NotLinked 18.2%

Equivalence testing

Advanced coverage EmsmEEE

Code Coverage Report
The code coverage report provides a detailed analysis of the source code covered by the tests. ATLAB Compiler SDK™

Overall Coverage Summary
Summary of the code coverage metrics for all source files.

Coverage Metric Executable |Missed | Code Coverage
Total Files Function 3 0 I 100%
Statement % » ) oo MATLAB Test™
5 Decison % 5 . e « curent e : ;
Conditon 30 6 - £ nodete ) MATLAB Coder™
mciDC 5 s )

if (pathLengthe=realmax)
% Mo path ex 50 set distance to

pathLength = -1;
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Link to Requirements Verification

'}'3 Requirements Editor

4\ MathWorks

REQUIREMENTS
|U_q'p E E e T i I% peete @ “9 T” Filter View = [ Columns = q %
New Open & Import i Profile Editar Add Add Show (@ Refresh Information « | 2earch | Traceability Traceability
Requirement Set Requirement ~ Link v & Preferences Requirements | Links h Matrix Diagram
FILE PROFILE REQUIREMENTS LINKS VIEW EDIT ANALYEIS
| Reguirement: XRPD_ML 3_2
Ir Summary ¥ Properties
’ lhl YRPD_System Type: Functional w
~ [&] XRPD_SystemMLComponent - —
v B 1 ML component requirement for ¥-Ray Pneumonia Detector (XRPD) _— CustomID: XRPD_ML_3_2
B 11 Intraduction Summary: ML component test precision
B 12 ML component description
v B 13 ML compenent requirements P Rationale
v E 131 ML component input wp | Arial v ~B I O . EEEE d El
g 1311 ML component input should be 28:28x1 Accuracy of the trained model must be above 90% (with test data)
E 1312 ML component input data (training) should be 28x28x1
E 1313 ML component input data (validation) should be 28x28x1
E 1314 ML component input data (test) should be 28x28x1
v F 132 ML component output
E 1321 ML component output should be 2
E 1322 ML component output labels should be "normal’ or ‘pneumonia’
v [ 133 ML component accuracy
E 1331 ML component training precision Keywords:
‘B 1332 ML component test precision
f » Revision infermation:
E 1333 ML component avoid overfitting
E 1334 ML component out-of-distribution detection r' Links )
E 134 ML component latency S, Implemented by:
v B 135 ML component robustness ®l 738897 723.1in evaluateModelAccuracy.m
E 1351 ML component robustness 1% perturbation = = Refines:
E 1352 ML component robustness 0.5% perturbation E XRPD ML 3ML component accuracy
E 1353 ML component robustness 0.1% perturbation 2 & Verified by:
8 136 M. companent impcmentation #l 7388977232 in MLComponent Accuracyﬂo
N J
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Simulink Test
Develop, manage, and execute simulation-based tests

Test Test
Harnesses

Test

Authoring

Manager

= Author, manage, organize tests = |solate Component Under Test = Specify test inputs, expected
= Execute simulation, equivalence = Synchronized, simulation test outputs, and tolerances
and baseline tests environment = Construct complex test
= Review, export, report sequences and assessments
= = M:-w e % DoubleSTdriven/Test Sequencel - Test Sequence Edtor [=ETx]
- —Pgexr | 2 5
s 3 ottle | e pemezeme ST sl
;:;'WA:M.M; = o] e si ?i%] == <
:

Component
under test —— —

. A
= =
Test Browser
Report Generated by Test Manager
e E— Ti Landis Regression Tests
Author: Je

el ;0 -
Scenario
5 Signal 1
a Expected Behavior

true

Signal Editor ""G‘jj“ |

.50 10.0 10.5 11.0 {1.5

e ) es
Ty o 2
— e Test Environment
Faflorm:  PCWINGS
MATLAB:  (R2015a) Reports

:
:
D e : |
Examples = : .
- o > : - | [\ - e
hrott = - RESPONSE
Si | 3 hift | - Si |
ional spee EPPEL T Signal fase
1.5 12.0 12.5 13.0 23.5

Examples

—D2s

Time-Series Data

Temporal Assessments

Examples

58
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How to optimized performance in hardware constrained

environment?

T

(175 (1]

=%
[T

Memory: 32GB
@ 10TFLOPs

Memory: 8GB
@ GFLOPs

[ &8

Compression

Pruning and Model
Compression techniques
to reduce model size and
speed up inference

4\ MathWorks
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How to optimized performance in hardware constrained
environment?

10|

Deployment

3
olaslio

Pruning and Model
Compression techniques
to reduce model size and
speed up inference

400

Quantization " m Il [

. ConverSIOn from floatlng pOInt to flxed pOInt Classification Object Detection ~ Semantic Segmentation

Deep Network Quantization App 22020 100

Pruning . . Taylor Pruning R2022a =

. Rem_ovmg unimportant parts of the network e R2022b

Projection R o o g
« Project learnable parameters into a lower dimensional space s e
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Al model compression workflow

2

Determine
Hardware

Constraints

D

» Select Model »

Select Model

Size aware model

selection

. Accuracy _ , T,

mmmmmm

Reset- 1

Relative Prediction Time

Simplify

Model

Simplify Model

Projection and Pruning

.=

Quantize Model
Parameters

Quantize Model

Deep Learning ————

Toolbox Model
Quantization
Library

Fixed-Point =SS

Designer

4\ MathWorks

Deploy &
Integrate
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Conclusion

- Many promising application in the intersection between Al and Simulation

= Combining Al and simulation for designing complex system is all about
tradeoffs

- MATLAB and Simulink
— Run simulation of Al model at the system level and collect metric
— Refine model and implement the optimal Al technique
— Balance Al accuracy and deployment efficiency
— One toolchain for seamless interaction between Al and simulation
— Select and implement the optimal Al technigue balan
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Key takeaways

Al Modeling Simulation & Test Deployment
N :
||‘||\ [

ol18810
Data cleansing and
preparation

Integration with os’ Size aware model
complex systems **¢ selection

Model design and @ Embedded devices

tuning

Compression

23 Hardware System simulation ' _
accelerated training % techniques (pruning,
projection)

— x System verification .
* Interoperability 2 et vl e _|-"r Quantization

% Enterprise systems

¢ Edge, cloud,
desktop

Q Human insight

Simulation-
generated data

Toolpoxes fqr_ Low-code workflow for Al Simulink blocks for Model compression  Code generation for
domaln-speCIfl_C Modeling through Apps Al models make techniques to reduce embedded targets
pre/post-processing integration easy model size and speed
Import models from up inference

TensorFlow, PyTorch or
other DL Frameworks 63



Thank you!

Q&A

4\ MathWorks
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