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How much longer can you drive before recharging?

SoC =0%

OO | - 3 )

Charge

State of Charge (SoC) cannot be directly measured x | v Predict battery SoC using Al with MATLAB & python
No observed data x | v Generate realistic data with Simulink
Need to embed model for real-time data x | v Convert python model into MATLAB to generate code
How to handle data drifting from baseline x | v Deploy MATLAB algos and Simulink model in the cloud
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Battery State-of-Charge (SoC) estimation using Al
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A predictive maintenance solution is more than an algorithm
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Many challenges

i
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MATLAB for Predictive Maintenance

P Use interactive apps to analyze time series

> Import, visualize, extract new features, and
generate MATLAB code

P Detect data and concept drifting

&\ MathWorks
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Types of Maintenance

. . y Machine 4
- Reactive — Do maintenance once there’s a healh
problem
— Problem: unexpected failures can be expensive and i £ >
potentially dangerous fime
. Mcchine“
- Scheduled — Do maintenance at a regular rate  heai —~F
— Problem: unnecessary maintenance can be wasteful; % Sill usable
. . . condition
may not eliminate all failures .
Time
- Predictive — Forecast when problems will arise i
- wlh 1
— Problem: difficult to make accurate forecasts for health s Optimum fime fo
~ o maintenance

complex equipment now }é‘

Predicted failure

Time
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Why perform predictive maintenance?

N

Increase

« Service life of parts
* Equipment safety
« Overall profitability

Reduce
« Downtime

 Maintenance costs
* Equipment failures

4\ MathWorks
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What does a predictive maintenance algorithm do?

Is my machine

operating
normally?

Anomaly Detection

~N

J
~N

Why is my
machine behaving
abnormally?

Fault Detection
(Diagnostics)

J

How much longer
can | operate my
machine ?

Remaining Useful
Life Estimation
(Prognostics)

J

| need help.

One of my cylinders is blocked.

| will shut down your line in 15 hours.

4\ MathWorks
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What does a predictive maintenance algorithm do?

start here

Most organizations}

e

Is my machine

operating
normally?

V )

Anomaly Detection

Why is my
machine behaving
abnormally?

J
\
Fault Detection

(Diagnostics)
Y,

How much longer
can | operate my
machine ?

Remaining Useful
Life Estimation
(Prognostics)

\’

But ultimately want
to get here

|

Increasing:

« Algorithm complexity
« Data requirements
* Business value

4\ MathWorks
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MATLAB apps to extract and generate new features

FEATURE DESIGMER HISTOGRAM 9
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Probability (%)

MATLAB for Predictive Maintenance
Data and concept drifting

Why data/concept drift? Because static data/model assumption rarely holds in the real world
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MATLAB for Predictive Maintenance
Data drifting: detect drift from baseline

Distribution (%)
tn =

=

=-
m =

Distribution (%)
n o

Permutation Results for x1

P-Value: 0285 Drift Status: Stable

Wasserstein Metric Threshold Value: 0.22381
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“More than half of Al Models Never Make It To Production” =

Source: Gartner 2021 !

From development How to deploy applications and
to production integrate them in an IT ecosystem



Other deployment - Code generation for Machine/Dee

Application
logic

N

&>

\/

u ¢ OneDNN
(ted =
library

Optimization ARM Compute
library a rm Library

and Coders.

TensorRT and
Opti.mization @a cuDNN Libraries
library NVIDIA.

Plain C Code
No Library Needed

L

TensorFlow Lite
Support for TFLite R2022a

0D Learn

Ing

Defect Detection D
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Integrate functions and applications in an IT ecosystem

Ease-to-use functions and apps allow you to deploy
applications without any IT skills

Integrate MATLAB & Simulink into your entreprise
applications with an endpoint HTTPS and REST API

Many different ways to deploy your algorithms

22



4\ MathWorks

Generate web services and microservices

| need to put my MATLAB algo in production for streaming
~_and asynchronous analysis

i You can easily integrate your MATLAB functions in

production, onprem or in the cloud

Process Engineer

4
PAEN

4 N\
Production Server

‘ mySimulink
Model
. atg
.

L3
\ 4
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Models’ deployment for data drifting

m|

predictSOC.py

@|

detectDrift.m

A

batteryModel.slx

m

&

(]

Predict battery
state-of-charge

Detect data drifting
from baseline

Model-based
labeling

4\ MathWorks

MATLAB
Production
Server
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Models' deployment for data drifting

o Detect data drifting
@é — I D — from baseline -
e New streaming Run one MATLAB
data MATLAB instance

Production
Server

. Model-based :. Predict battery
labeling e State-of-charge ¢
pyrunfile
newdata
label
Update

model % Update DL
network G,‘
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Models' deployment for data drifting
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Deployment for streaming analysis

Models' deployment for data drifting

[ Fleet Metrics - Grafana

C A Notsecure | ah-pwebb:3000/d/0Cq-vxcnz/fleet-metrics?orgld=1 {: Update

4 TMW @ Code Search ®% Gecko BaT Internal External Reading list

n & Signln
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MBD meets Al

Predictive
Maintenance and
data drifting

From development
to production

Testing and
Cl/CD deployment




Cloud

Elastic scaling
Data sovereignty
Automation
Multiple uses

4\ MathWorks
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DevOps Lifecycle

Development

o

4\ MathWorks
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DevOps Lifecycle

REVIEW

Developers

and
Test Authors

d0713A34a

Submit

Y and
%\S‘\A © Repor/s
Gt 7
A3
(®)
Qa0

OO
GitHub Actions &

kubernetes

DEPLOY
dling

Version
Control

Q_ Monitor Assess
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Simplifying Continuous Integration for MATLAB & Simulink users

MATLAB users can setup pipelines

Enable users to model pipeline inside MATLAB
Create single integration point for DevOps engineers
Empower users to maintain and debug pipeline
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Write and run your tests locally

OO
GitHub Actions &

kubernetes

REVIEW
DEPLOY
alng

Developers
’ . Version
and Submit Control
Test Authors oniro

@ git

Q_ Monitor Assess



1 — Write and manage test locally

User =

Search Documentation ()

— e v

ap &5

ooo

I W 8 %

PROJECT X EDITOR

Enable coverage

w CURRENT PROJECT

New Open Save Test Dependency Labels  Shortcuts Pull  Push Branch  Commit
v v v Manager Analyzer H
FILE PROJECT TOOLS SOURCE CONTROL and VIeW report
= e | & / > MATLAB Drive > A_Sample_Project > v |
¥ CURRENT FOLDER o I Test Manager x| + 3 COMMAND HISTORY o
Search
ALEE | q

=] A_Sample_Project.prj

Open
project

[ Sources
[ SmokeTests

[ UnitTests

¥ WORKSPACE

v}

[AII Tests in Current Project ~

+ 4/20/2022 03:55 PM -%

Test Manager: All Tests in Current PrOJect } Test suite bemg V|ewed anmject(A Sample_Project.prf)

70 @ ]
0 0
Total Tests Passed Failed

Test Details Expand All | search

Test
» O SmokeTests/smokeTest1.m

Diagnostic

» O SmokeTests/smokeTest2.m

» O UnitTests/backendTests.m

hd O UnitTests/uiTests.m
O uiTestA (s=1+d)
(O uiTestA (s=1+a+b)

(O uiTestB . .
1 Results are persisted in

project, can close/reopen
Test Manager or MATLAB

)
0

Incomplete

Time

‘ Summary of tests and results \

|passed x failed x incomplete % More Filtersv ==

| Table of tests and results

14
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Test selector with DependsOn!

Project - mltest_project ‘ Editor - MLT_AST 008.m ‘O Web Browser - MATLAB Test Manager ®
J MATLAB Test Manager )a:l-l-l H [ E|
>-¢|MBE-B-&
MATLAB Test Manager: dependOn
30 Use DependsOn
Total Tests
Test Details Expand Al 2] st Suite Manager // - x K NotrunX Y Fiters v fg~
Test Time
v @tests/CodeCoveraae/MLT CodeCov 001.m 828 s |depend0n / ‘ -
Comp
© MLT CodeCov 001/testConditionCodeCoverage codecov 0.00s
(© MLT CodeCov 001/testFunctionCodeCoverage (O Folders g., myTests1;myFolder i 8 0.00s
© MLT CodeCov 001/testStatementCodeCoverage O Tags e.0., ui_tests backend_tests 0.00s
@ MLT CodeCov 001/testDecisionCodeCoverage 0.00s
© MLI CodeCov 001/testMCDCCodeCoverage Ob e DependsOn(tests/quadraticSolver.m’) | 0.00s
v @ tests/CodeCoverage/MLT CodeCov 003.m
© ML CodeCov 003/testStatementCodeCoverage 0.00s
@ MLT CodeCov 003/testFunctionCodeCoverage 0.00s
© MLT CodeCov 003/testDecisionCodeCoverage 0.00s
@ MLT CodeCov 003/testConditionCodeCoverage 0.00s
e MLT CodeCov 003/testMCDCCodeCoverage 0.00s
v @tests/ComDarison/MLT AST 010.m [ ,{'L_, e ] [ . Bemoe ]
© MLT AST 010/testQuadraticSolver(input=NegCase ExpectedValy Save 0.00s
@ MLT AST 010ltestQuadraticSolver(lnDut:PosCaseZ,ExnectedVM 0.00s
© MLI AST 010/testQuadraticSolver(input=PosCase1 ExpectedValue=PosCase1, AbsoluteToleranceValue=PosCase1 Relat... 0.00s
(®) MIT AST 010/testOuadraticSolver2(innut=PosCase FxnectedValue=PosCase1 AbsoluteTaleranceValue=PosCase1 Rel... 0.00s v

‘ MathWorks
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Coverage metrics: tells you what you have tested

% Advanced Metrics T wettm s ety e
format = matlab.unittest.plugins.co i —
plugin = matlab.unittest.plugins . Co| Seeecms oemmmms s i | MetricLevel value
Coverage Metrle | Executable |Missed | Code Coverage E ‘statement’
oS S = = J_:| ot E ‘decision’
5 ""“ﬁ"f"" z : | xm ) o )
M‘:’::“ 15 6 : Py E condition
El "mcdc’
, s T T T T E ST A AT TSR ST TS E ST EEEEEEEEEEE ST ~ N
' MATLAB Test \
MATLAB | :
\ | e
Statement ' - - Modified :
& Eunction : Decision Condition Condition/ :
I Coverage Coverage Decision I
Coverage I
' Coverage
) I |
|
|
R2022a ‘ R2023a )
S ’
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Equivalence testing feature: Catch issues before leaving
MATLAB

Source Build >

myFunction myFunction

Execute

[ out = myFunction(a, b); out = myFunction(a, b); J

Verify

out == out

38
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Version control

Artifacts
\y OutpYt » and p
Q’\)\\6 epor/s
v
& @ o &2
¥ ”
©
Qad
5 P{nl I é‘ GitHub Actions & .
Z i w g
°‘ iy °
kubernetes
. Version
Developers S U b mit
and Control
Test Authors o
Q_ Monitor Assess
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2 — Version your code locally and directly from MATLAB

‘ Project - StreamingPumpDemo

PROJECT SHORTCUTS

POk s QB @

All| Project (226) | Medified (344)

[ Name =

Labels
&-{7]]] Classification

P A PR R G IS S IS TN,
)..,: | ' “:-..,‘,f‘ JTR
- O . » .&.. ) TS (o
N o

S YOV

TortoiseSVN

‘ MathWorks

41



Version control

Developers

and
Test Authors

REVIEW

t, Artifacts,

GitHub Actions &

kubernetes

d0713A34a
DEPLOY

e

Version

Submit Control

‘ MathWorks:

42



4\ MathWorks

What does a Cl-based workflow look like?

Build and Test
o‘ Reports

—
— ] ]
] EXE
Source Code Continuous Build Artifacts
" [ Integration

epostony Platform

Developers
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Deploy — Create a Microservice in MATLAB

= Requirements:
— Docker
— MATLAB Compiler
— MATLAB Compiler SDK
— Simulink Compiler

= Code:

mpsResults = compiler.build.productionServerArchive ("“myFunction.m”);

compller.package.microserviceDockerImage (mpsResults, ..
"ImageName", "micro-myfunction") ;

45
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Deploy — Integration with the DevOps Pipeline

= How to use it in pipeline

build-and-deploy

Set up job
Check-out repository
Setup MATLAB

Set up Docker

Create the microservice

Connect to Azure registry Microservice build

Tag and push the Docker image to Azure

Post Check-out repository

Complete job
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A predictive maintenance solution is more than an algorithm
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A predictive maintenance solution is more than an algorithm

Key Capabilities
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A predictive maintenance solution is more than an algorithm

Integration Services
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A predictive maintenance solution is more than an algorithm

Key Capabilities

Integration Services

Sourced Elsewhere

@\ MathWorks

(

\ ( )
Assets & Edge IT/OT Systems Analytics Development A
4
4 ) Server & Cloud :
Sensors Platforms Data Access Data Archive
= ' = -
A 4
\_ J
Sl Deployed algorithms Data processing
:E: & simulations Predictive algorithms
= = \. J : ;
- - ) . System simulations
- < Server Data \ )
Deployed Hardware || Streaming Business Decisions
el = ))) Dashboards Scheduling
0 g = A P
J U J J

52






MATLAB EXPO

FRANCE

Thank you!
Questions?

o) MathWorks’

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.




	Intro
	Slide 1
	Slide 2
	Slide 3

	Demo
	Slide 4: How much longer can you drive before recharging? 
	Slide 5: Battery State-of-Charge (SoC) estimation using AI
	Slide 6: AI-driven system design and collaboration
	Slide 7: AI-driven system design and collaboration
	Slide 8

	Pred Maintenance
	Slide 9
	Slide 10: A predictive maintenance solution is more than an algorithm
	Slide 11: Many challenges
	Slide 12
	Slide 13: Types of Maintenance
	Slide 14: Why perform predictive maintenance? 
	Slide 15: What does a predictive maintenance algorithm do?
	Slide 16: What does a predictive maintenance algorithm do?
	Slide 17
	Slide 18
	Slide 19

	Deployment
	Slide 20
	Slide 21: Other deployment - Code generation for Machine/Deep Learning 
	Slide 22
	Slide 23: Generate web services and microservices
	Slide 24
	Slide 25
	Slide 26
	Slide 27

	Testing
	Slide 28
	Slide 29
	Slide 30
	Slide 31: DevOps Lifecycle
	Slide 32: Simplifying Continuous Integration for MATLAB & Simulink users

	Test
	Slide 34: Write and run your tests locally
	Slide 35: 1 – Write and manage test locally
	Slide 36: Test selector with DependsOn!
	Slide 37: Coverage metrics: tells you what you have tested
	Slide 38: Equivalence testing feature: Catch issues before leaving MATLAB

	Source Control
	Slide 40: Version control
	Slide 41: 2 – Version your code locally and directly from MATLAB

	CI
	Slide 42: Version control
	Slide 43: What does a CI-based workflow look like?
	Slide 45: Deploy – Create a Microservice in MATLAB
	Slide 47: Deploy – Integration with the DevOps Pipeline

	End
	Slide 49: A predictive maintenance solution is more than an algorithm
	Slide 50: A predictive maintenance solution is more than an algorithm
	Slide 51: A predictive maintenance solution is more than an algorithm
	Slide 52: A predictive maintenance solution is more than an algorithm
	Slide 53
	Slide 54


