
0

Gaurav Ahuja, MathWorks

Master Class: Developing Safe and 

Secure Embedded Software from 

Desktop to Cloud Using Model-Based 

Design

Rajat Arora, MathWorks
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Tooling and approaches must address today’s challenges and trends

Aerospace and Defense

Software and Internet

Financial Services

Big Data, Agile, DevOps, 

integration with IT systems

Process Industries Industrial Machinery

Automotive

Energy ProductionRailway Systems

Semiconductors

Communications

Electronics

Complex multi-domain systems, software-defined and autonomous, 

model-based and data-driven

Modernization, often on legacy platforms, 

becoming data-centric for optimization and maintenance

Wide range of compute platforms, 

many kinds of HW/SW integration

Comms infrastructure, plus all types of 

connected systems across industries
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Modeling &

Simulation

Code

Generation
Test &

Verification

There are three key 

pieces to

Simulation and Model-Based Design

Model-Based Design
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Modeling & Simulation

Automatic Code Generation

Testing & Verification

Modeling &

Simulation

Code

Generation

Test &

Verification

In Model-Based Design, a system model is at the center of the 

workflow
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Traditional Model Based Design Development

Desktop
AnalysisDesign

Embedded 

Software

Modeling & Simulation

Automatic Code Generation

Testing & Verification

Modeling &

Simulation

Code

Generation

Test &

Verification
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Scaling Development To Address Complexity

Verify & Deploy

Cloud-DevOps
Build

Desktop
AnalysisDesign

Embedded 

Software
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Make Modeling and Simulation Easier

Enable Engineers

at Any Level to

Model and Simulate

Any System

1 Development
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Powerful Interfaces to Explore Behavior
1 Development
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Efficient 

C/C++

Simulink Model

Application Logic

1 Development
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Why Use Model-Based Design for Embedded System Development?
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Data gathered by Hewlett Packard referred by XB in 2017

https://xbsoftware.com/blog/why-should-testing-start-early-software-project-development/

Invalid Requirements 

Start Here
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DESIGN

Environment Models

Physical Components

Algorithms

RESEARCH REQUIREMENTS

IMPLEMENTATION

Analog

Hardware
MCU DSP FPGA ASIC

SPICEVHDL, VerilogC, C++

INTEGRATION

T
E

S
T

 &
 V

E
R

IF
IC

A
T

IO
N

Quantifiable benefits of Model-Based Design

“Front-loaded development with 
Model-Based Design enables us to 
shorten development cycles and 
minimize rework, which allows us 
to deliver products earlier than our 
competitors.” 
Dr. Hisahiro Ito, Asst. GM.

System models reused across 54 products 
worldwide. “Once we had moved to Model-
Based Design, we were able to use the same 
core system in many different vehicles by 
simply calibrating parameters such as the 
vehicle dimensions and then re-generating 
production code.” 
Johan Hägnander, GM Engineering Europe

Model-Based Design enabled 
Continental to verify our design in-
vehicle earlier, eliminating six months 
of hardware development and one 
prototype build.  Verification time 
was cut by up to 50 percent.  90 
percent of application automatically 
coded. 
Thomas Ehl, Continental

“We use our system design model in 
Simulink for ARP4754 to establish stable, 
objective requirements. We save time by 
using the model as the basis for our 
software design model for DO-178—
from which we generate flight code—
and reusing validation tests for software 
verification.”
Ronald Blanrue, Airbus Helicopters 
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▪ High integrity applications development follows standards and 
guidelines

▪ Standards and Guidelines have objectives for development process 
activities

– Impose additional constraints on development

– Require creation of additional artifacts

– Require more thorough verification, validation and testing activities

▪ Standards and Guidelines require evidence that the objectives were 

met to certify:  compliance demonstration

Development Processes for High-Integrity Applications 

ISO 26262

Functional Safety 

Automotive

IEC 61508

Functional Safety 

Industrial 

Automation

EN 50128

Functional Safety 

Railway

IEC 62061

Functional Safety 

Machinery

IEC 62304

Functional Safety 

Medical

DO 254

Functional Safety 

Avionics

ISO 25119

Functional Safety 

Agricultural 

Machines

DO 178C

Functional Safety 

Avionics
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1 Development

Systems Analysis

Requirements Systems Components

Test2
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Systems Analysis

Requirements

Toolbox

System

Composer
Simulink

Test2
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Test2
High Integrity Verification Workflow
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Test2

High Integrity Verification Workflow
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Requirements Traceability and Analysis

• Where are requirements implemented?

• Is design and requirements consistent?

• How are they tested?
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Why traceability matters…

Ensure application is complete, fully tested, and meets 

customer requirements

Understand the impact of requirement changes to 

implementation and test (i.e. “Digital Thread”)

Required to meet certification standards such as:

– ISO 26262, ASPICE for Auto

– DO-178C for Aerospace

– IEC 62304 in Medical

– Many others….
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Author, link, and validate requirements for designs and tests

Requirements Toolbox

Import / Export

Simulink, System Composer, 

Stateflow, MATLAB Code

Generated 

Code

External 

Requirements

Requirements 

Management 

Tools

Author / Model

Simulink Test

MATLAB Unit Test

Trace

Report 

Analyze 
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Work with DOORS requirements within System Composer, Simulink 

or Stateflow with Requirements Perspective
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Model-Based Systems Engineering

How to Model and Analyse System and Software Architecture

System Composer
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Model-Based Systems Engineering

System Architecture Models

(System Composer)

System requirements

(Simulink Requirements)
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Model-Based Systems Engineering

Software Architecture

(System Composer and Simulink)

Software Requirements

(Simulink Requirements)
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Model-Based Systems Engineering
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Model-Based Systems Engineering

▪ Architecture Models

▪ Profiles, stereotypes, properties

▪ Allocate requirements

▪ Views to focus on relevant parts

▪ Perform Analysis

System Composer
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Compliance to Standards and Guidelines

Is the design built right?

Is it too complex?

Is it ready for code generation?
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Automate verification with static analysis

Model Advisor

Check for: 

• Readability and Semantics

• Performance and Efficiency

• Design Errors 

• Clones

• And more……

Generate reports for audits

Result Statuses
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Guidance Provided to Address Issues or Automatically Correct
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Edit-Time 

Checking

Shift Verification Earlier With Edit-Time Checking

• Highlight violations as you edit

• Fix issues earlier

• Avoid rework

• Author and customize edit-time checks

C/C++/HDL

Generated code

Requirements
Requirements 

Model
Implementation 

Model
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Assess Quality with Metrics Dashboard 

• Consolidated view of 

metrics 

• Size

• Compliance

• Complexity

• Identify where issues  

may be
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Detect Design Errors with Formal Methods

▪ Find run-time design errors:
• Integer overflow 

• Dead Logic

• Division by zero

• Array out-of-bounds

• Range violations

▪ Generate counter example to 
reproduce error



3333

Prove That Design Meets Requirements

▪ Prove design properties using 
formal requirement models

▪ Model functional and safety 
requirements

▪ Generates counter example for 
analysis and debugging
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Reviews, Static Analysis and Formal Verification at the Model Level

Uncover hard to find dead 

logic and design flaws

Design Error 

Detection

Property

Proving

Prove design meets 

requirements

Model Metrics

• Analyze complexity, 

size, reusability

• Assess design quality

Standards & 

Guidelines Checks

• Automate compliance 

to standards 

• Customize checks

• Find and fix compliance 

issues while you design 

with Edit Time Checking 
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Systematic Functional Testing

Does the design meet requirements?

Is it functioning correctly?

Is it completely tested?
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Typical Functional Testing Workflow in Model Based Design
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Test Case

Systematic Functional Testing with Simulink Test

AssessmentsInputs

Test Sequence

Data file (input)

Model Sim through SIL, PIL and HIL

Scale with Parallel Computing Toolbox and Continuous Integration

and more!
and more!

Signal Editor

Stateflow

Test Harness

Main Model

MATLAB Code

Data file baseline)

Test Assessment

Temporal Assessment

MATLAB Code
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Main Model

Test Harness

Component 

under test

▪ Isolate Component Under Test

▪ Synchronized, simulation test 

environment

Test 

Harnesses

Simulink Test

Develop, manage, and execute simulation-based tests

▪ Author, manage, organize tests

▪ Execute simulation, equivalence 

and baseline tests

▪ Review, export, report 

Test

Manager

Test Browser

Test Results

Reports

▪ Specify test inputs, expected 

outputs, and tolerances

▪ Construct complex test 

sequences and assessments 

Test

Authoring 

Signal Editor

Temporal Assessments

Test Sequence

Time-Series Data
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Test Sequence Block: Step-based and temporal test sequences

Test Sequence Block
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4141
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Simulink Coverage

Measure test coverage in models and generated code

•Measure test completeness

• Identify missing tests or 

unintended functionality

Model 

Coverage 

Generated Code 

Coverage

•Find untested generated code 

•Map results from code to 

model object

Highlighting  and 

Reporting

•View coverage results on diagrams

•Manage coverage results in 

Simulink Test Manager
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Addressing Missing Coverage

Design
Model

Functional 
Tests

Coverage Analysis
Coverage 

Report
Partial Coverage

(less than 100%)

Test Generator
(Simulink Design Verifier)

Additional 
Tests

Step 1

Step 2

Step 3 Coverage Analysis
Coverage 

Report
Full Coverage

(100%)
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Automatically Address Missing Coverage

Generate additional tests automatically using Simulink Design Verifier from 

within the Test Manager to increase coverage

▪ View coverage results in the Test Manager for existing tests

▪ Select coverage results and click Add Tests for Missing Coverage
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Demo: Generate Tests for Coverage from Test Manager



46

Simulink 

Requirements

Simulink Test Manager – Integrates MathWorks V&V tools 

Simulink 

Coverage

Simulink Test

Simulink 

Design Verifier

Simulink Check
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Efficient 

C/C++

Simulink Model

Application Logic

Automatic Code Generation
Reliable and high performance, with flexible choice of targets
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Automatic Code Generation
Reliable and high performance, with flexible choice of targets

FPGA

CPU

Automatic

Code

Generation

GPU

PLC

algorithms

MATLAB

analytics

dynamic models

Simulink

physical systems

control logic

Stateflow

state machines



4949

Automatic Code Generation
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Requirements Traceability to Model, Code and Test Cases 

Tests & Test Results

Generated Code

Traceability Matrix

x
Requirements
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Static Code Analysis with Polyspace
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Violations

Defects

Runtime errors

Reports

Polyspace is independent of the origin of code

Hand Code

Model-Based Design
(MATLAB, Simulink, Stateflow)

Polyspace
C, C++

C, C++

Model-Based V&V tools

Code Generation tools

#include <assert.h>

int speed(int k)

{

int i,j,v;

i = 2;

j = k+5;

while (i < 10) {

i++;

j+=3;

}

return 1 / (i-j);

}
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Can you find a bug?

Could there be a bug on this line?



5454

Consider the operation: x / (x - y)

Potential run-time errors

– Variables x and y may not be initialized

– An overflow on subtraction

– If  x == y,  then a divide by zero will occur

How to prove that run-time errors do or do not exist?



5555

Static Code Analysis with Polyspace

Results from Polyspace Code Prover

▪ Code metrics and standards

– Comment density, cyclomatic complexity,…

– MISRA and Cybersecurity standards

– Support for DO-178, ISO 26262, ….

▪ Bug finding and code proving

– Check data and control flow of software

– Detect bugs and security vulnerabilities

– Prove absence of runtime errors 



5656

Polyspace is Integrated with Simulink

1. Launch Polyspace 

from Simulink
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Polyspace is Integrated with Simulink

1. Launch Polyspace 

from Simulink

2. Navigate from Code to 

Model
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Equivalence Testing

Processor in the Loop 

(PIL)

Software in the Loop 

(SIL)

C/C++

Is the code functionally equivalent to model?

Is all the code tested?
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Target

Board

Desktop

Computer

C/C++

Equivalence Testing

▪ Processor in the Loop (PIL)

– Numerical equivalence, model to target code

– Execute on target board

▪ Re-use tests developed for model to test code

▪ Collect code coverage

C/C++

Generated code

▪ Software in the Loop (SIL)

– Show functional equivalence, model to code

– Execute on desktop / laptop computer

PIL

SIL

Requirements
Requirements

Model
Implementation

Model
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Test2

High Integrity Verification Workflow
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

Model Compare

3 Merge
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

3-Way Model Merge

3 Merge

m

a b
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

Compare Report

4 Review
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

Projects

5 Submit
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From Desktop to Cloud for Model Based Design using CI/CD

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri
g
g
e
r

& many more…
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Benefits of Continuous Integration

Repeatability

Quality

Speed

Collaboration

Audit Ready
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Model-Based Design enables high DevOps performance

▪ DevOps Goal: „Reduce the time between 

committing a change and placing it in production, 

while ensuring high quality and compliance„ Lead Time     <1hour            >6months 

Change 

Failure 

Rate

High 

Performers

Low 

Performers

0-5%                   15-30%

Source: state-of-devops-2021.pdf (google.com)

Online Panel Discussion: Agile Vehicle Software Development and Effective Integration of Models

Link to technical article

https://services.google.com/fh/files/misc/state-of-devops-2021.pdf
https://www.mathworks.com/videos/online-panel-discussion-agile-vehicle-software-development-and-effective-integration-of-models-1634921326013.html
https://www.mathworks.com/company/newsletters/articles/developing-autosar-compliant-software-for-a-hybrid-vehicle-battery-management-system-with-model-based-design.html
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CI workflow and tools are language- and domain-neutral

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

Each of these can “speak” MATLAB and 

Model-Based Design 
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

Manage using Projects

Commit and Push to 

Remote Repository

1 Development

2
Continuous

Integration
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

Verification, Build and Test

Reports, Build Logs, Test Results, 

Code Coverage

1 Development

2
Continuous

Integration

Back-to-
back & 

HIL

Static 
Code

Analysis

Generate 
Code

Model 
Test

Static 
Model 

Analysis
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Model-Based Design Reference Workflow

Software 

Requirements

Software 

Architecture

Integrated 

Object Code

S
y
s
te

m

R
e

q
u

ir
e

m
e

n
ts

Model

MIL Unit & Integration Testing

Architecture Verification

Static Model
Analysis

Static Code
Analysis

SIL Back-to-Back Testing

Generated 

C/C++ Code

PIL Back-To-Back Testing

Check 

Models

Check 

Design 

Errors

MIL Test

Coverage Analysis
PIL Test

SIL Test

Static Code 

Analysis

Gen

Code
Build
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Model-Based Design Reference Workflow

Check 

Models

Check 

Design 

Errors

MIL Test

Coverage 

Analysis PIL TestSIL Test

Static Code 

Analysis
Gen

Code BuildSetup

▪ Define Process and Automate

– Identify Tasks

– Define Sequence

– Define Outputs

– Script the Tools

build.m

genCode.m
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1) Simple Setup

✓ Prebuilt Model-Based 

Design pipeline

✓ Built-in Model-Based Design 

tool support

✓ Tailorable

2) Desktop Integration with

Process Advisor app

✓ Local prequalification

✓ Local Debugging

3) 3rd Party CI Integration

✓ Jenkins/Gitlab YAML

✓ Optimized Model-Based 

Design Builds

✓ CI Results Integration

CI/CD Automation for Simulink Check Support Package

Generate 
Reports

Static 
Code

Analysis

Generate 
Code

Model 
Test

Static 
Model 

Analysis
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Fully Tailorable

• Modify existing steps

• Remove steps

• Add custom steps

Prebuilt & Tailorable MBD Pipeline

TASKS TOOLS

Check Model Standards Compliance Simulink Check

Run Tests Simulink Test

Generate Source Code Embedded Coder

Check Code Standards Compliance Polyspace Bug Finder

Generate Software Design Description Simulink Report Generator

Design Error Detection Simulink Design Verifier

Verify Model Update & Simulation Simulink

Check Model Metrics Model Advisor

Built-in Library of Tasks

• Static Analysis

• Code Generation

• Testing

Zero Upfront Code

Run My Custom 
Task 

Run 
MIL Tests

Generate 
Code …
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MBD Pipeline Generation and Task Execution System

Capabilities

Pipeline of 

Tasks

Build 

System

Process 

Model

MATLAB 

Project

Execute in different workflows

• Interactive in Desktop (Process Advisor)

• Automated in CI

• Import results from CI into Desktop

Generate CI Pipeline

• Multiple Architectures

• Multiple Platforms

• OS agnostic

• Current: GitLab, Jenkins

• Future: GitHub, Azure Pipelines

Smart Orchestration

• Incremental execution

• Repeatable results
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Pre-qualification with Process Advisor

Local Desktop Workflow

Process Model

MBD 

Build Tool

20 2 3

10 1 1

2

3 2

5 1

15 4

15

15 1

15 1

93 7 15

60 1 5

Process

Advisor

Run Model 
Standards Checking

Run 
MIL Tests

Generate 
Code …
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Integration and Run with common CI Systems

▪ Automated Pipeline Generation

▪ Execute Pipeline 

in CI Systems like Jenkins

▪ Publish Results

▪ Debug on Desktop

20 2 3

10 1 1

2

3 2

5 1

15 4

15

15 1

15 1

93 7 15

60 1 5
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Continuous Integration Workflow with Model-Based Design – Invoke 

pipeline
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

MATLAB Jenkins Plugin

1 Development

2
Continuous

Integration
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

Failure Summary:

Name                                                                  Failed 

=================================================================================

LaneFollowingTestScenarios > Scenarios/LFACC_Curve_CutInOut_TooClose X

ERROR: MATLAB error Exit Status: 0x00000001

Build step 'Run MATLAB Tests' changed build result to FAILURE

Finished: FAILURE

Logs

1 Development

2
Continuous

Integration

3
Results Monitor 

and Review
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

1 Development

2
Continuous

Integration

3
Results Monitor 

and Review
junit, TAP, Cobertura
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Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor               Review

T
ri

g
g

e
r

1 Development

2
Continuous

Integration

3
Results Monitor 

and Review

ReportsReports
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Source
Control

CI/CD 
System

Webhook/Automation Trigger

Submit 
Changes

Pipeline
Execution

Desktop

Interactive
Development

Setup
Performance
Results Integration
Debuggability

CI Debugging & Prequal

Monitor/Debug 
Job Status & Results

Setup Deploy

Check 

Models

Check

Design

Errors

MIL 

Tests

Gen 

Code

Setup Deploy

Check 

Models

Check

Design

Errors

MIL 

Tests

Gen 

Code

CI/CD Automation Support Package

Prebuilt & Tailorable 

MBD Pipeline

Check 

Model MIL Test

Pipeline 

Generation and

Build System

Integrated CI 

Prequal

(Process Advisor)

Popular CI 

System 

Support

…

Simplifying Adoption and Optimizing CI/CD for Model-Based Design
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CI/CD Automation for Simulink Check Support Package

Build system to generate and optimally execute 

the process in your CI system

Prequalification with Process Advisor

Prebuilt & Tailorable Model-Based Design Pipeline

Examples to run process on common  CI Systems

Generate 
Reports

Static 
Code

Analysis

Generate 
Code

Model 
Test

Static 
Model 

Analysis

Process 
Model

Learn more:  Continuous Integration for Model-Based Design

https://www.mathworks.com/products/ci-cd-automation.html
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Other CI resources: 

▪ Continuous Integration Solution Page

▪ Videos:
– Continuous Integration with MATLAB and Simulink 

– Automotive DevOps for Model-Based Design with AWS

▪ Technical Articles: 
– Continuous Integration for Verification of Simulink Models

– Continuous Integration for Verification of Simulink Models Using 
GitLab

– Agile Model-Based Design: Accelerating Simulink Simulations in CI 
Workflows

▪ Documentation:  
– CI/CD Automation for Model-Based Design Support Package

– Continuous Integration Documentation Hub

– Tests for Continuous Integration

▪ Developer Zone: Continuous Integration

https://www.mathworks.com/solutions/continuous-integration.html
https://www.mathworks.com/videos/continuous-integration-with-matlab-and-simulink-1621602577778.html?s_tid=srchtitle_continuous%20integration_2
https://www.mathworks.com/videos/automotive-devops-for-model-based-design-with-aws-1653999780415.html?s_tid=srchtitle_devops_3
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.htmlhttps:/www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.htmlhttps:/www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.html
https://www.mathworks.com/company/newsletters/articles/agile-model-based-design-accelerating-simulink-simulations-in-continuous-integration-workflows.html
https://www.mathworks.com/company/newsletters/articles/agile-model-based-design-accelerating-simulink-simulations-in-continuous-integration-workflows.html
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/hardware-support/files/ci-cd-automation-simulink-check-support-package.pdf
https://www.mathworks.com/help/matlab/continuous-integration.html
https://www.mathworks.com/help/sltest/ug/tests-for-continuous-integration.html
https://blogs.mathworks.com/developer/category/continuous-integration/
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Getting Started: CI plugins and code examples

▪ Code examples

– CI configuration examples

– CI with Simulink

– Code coverage using Codecov

▪ CI plugins

– Azure DevOps

– CircleCI

– GitHub Actions

– Jenkins

– Travis CI

▪ Reference architectures (AWS, GCP, …)

– https://github.com/mathworks-ref-arch

http://github.com/mathworks/ci-configuration-examples
https://github.com/mathworks/Continuous-Integration-Verification-Simulink-Models
https://github.com/mathworks/matlab-codecov-example
https://marketplace.visualstudio.com/items?itemName=MathWorks.matlab-azure-devops-extension
https://circleci.com/developer/orbs/orb/mathworks/matlab
https://github.com/matlab-actions/overview
https://plugins.jenkins.io/matlab/
https://docs.travis-ci.com/user/languages/matlab/
https://github.com/mathworks-ref-arch


8888

Relevant Training Classes

▪ Simulink Fundamentals – introduction to designing models using Simulink

▪ Simulink Model Management and Architecture – Requirements Toolbox, Simulink Projects, 
Architectural Choices, Data Management, Simulink Report Generator

▪ Simulation-Based Testing with Simulink – includes Simulink Test

▪ Design Verification with Simulink – Simulink Design Verifier

▪ Embedded Coder for Production Code Generation – generating and using code from Simulink 
models

▪ Polyspace for C/C++ Code Verification – static analysis of hand code and automatically-
generated code

▪ Applying Model-Based Design for ISO 26262 (available upon request)

https://www.mathworks.com/learn/training/simulink-fundamentals.html
https://www.mathworks.com/training-schedule/simulink-model-management-and-architecture.html
https://www.mathworks.com/training-schedule/simulation-based-testing-with-simulink.html
https://www.mathworks.com/training-schedule/design-verification-with-simulink?s_tid=srchtitle
https://www.mathworks.com/training-schedule/embedded-coder-for-production-code-generation-two-day.html
https://www.mathworks.com/training-schedule/polyspace-for-c-cpp-code-verification.html
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Software-Defined Vehicle

Customer expectations
• Clean and Safe mobility

• Digital Life continuity

Technology & Innovation
• Electrification

• Autonomy

• Connectivity

Business opportunity
• App stores, SW features on demand

• SW services subscription plans

invest

demand

monetize
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SOA – What’s it all about?

▪ With SOA, applications are standalone processes that 

provide and/or require services distributed across the 

vehicle computing platform and the cloud

▪ SOA provides flexibility to add, remove, or update 

applications without impacting the entire, typically large, 

software system

▪ SOA is used by multiple industrial standards:

– AUTOSAR Adaptive Platform

– DDS (Data Distribution Services)

– ROS (Robot Operating System)
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Middleware

Simulink: Deploy software to different targets and standards

Simulink

AUTOSAR Classic

RTE

Basic Software

Application Software

. . . .

GPUFPGA

µC

AUTOSAR Adaptive / ROS / DDS

Software

Legacy ECU

Hardware
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MathWorks Consulting
Certification Advisory Service Overview

▪ MathWorks Consulting will help you to:

– Leverage Model-Based Design and supporting 

tools to their fullest extent to maximize ROI

– Reduce duplicated and manual effort

– Avoid common pitfalls by providing proven best 

practices for Model Based Design, system 

engineering and development of safety critical 

software with MBD

ISO 26262 Process Deployment Advisory Service

DO-178 Certification Advisory Service

https://www.mathworks.com/services/consulting/proven-solutions/iso26262.html
https://www.mathworks.com/services/consulting/proven-solutions/do178.html
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For further details, Q&A and 

feedback kindly reach out to

Gaurav Ahuja
gahuja@mathworks.com

Application Engineering Group

LinkedIn

Rajat Arora
rarora@mathworks.com

Application Engineering Group

LinkedIn

mailto:gahuja@mathworks.com
https://www.linkedin.com/in/gaurav-ahuja-43922a27/
mailto:rarora@mathworks.com
https://www.linkedin.com/in/rajatarora05/
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Share the EXPO experience 

#MATLABEXPO

[profile handle] [profile handle] [profile handle] [profile handle] [profile handle]
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