
0

Gaurav Ahuja, MathWorks

Master Class: Developing Safe and

Secure Embedded Software from

Desktop to Cloud Using Model-Based

Design

Rajat Arora, MathWorks

11

Tooling and approaches must address today’s challenges and trends

Aerospace and Defense

Software and Internet

Financial Services

Big Data, Agile, DevOps,

integration with IT systems

Process Industries Industrial Machinery

Automotive

Energy ProductionRailway Systems

Semiconductors

Communications

Electronics

Complex multi-domain systems, software-defined and autonomous,

model-based and data-driven

Modernization, often on legacy platforms,

becoming data-centric for optimization and maintenance

Wide range of compute platforms,

many kinds of HW/SW integration

Comms infrastructure, plus all types of

connected systems across industries

22

Modeling &

Simulation

Code

Generation
Test &

Verification

There are three key

pieces to

Simulation and Model-Based Design

Model-Based Design

33

Modeling & Simulation

Automatic Code Generation

Testing & Verification

Modeling &

Simulation

Code

Generation

Test &

Verification

In Model-Based Design, a system model is at the center of the

workflow

44

Traditional Model Based Design Development

Desktop
AnalysisDesign

Embedded

Software

Modeling & Simulation

Automatic Code Generation

Testing & Verification

Modeling &

Simulation

Code

Generation

Test &

Verification

55

Scaling Development To Address Complexity

Verify & Deploy

Cloud-DevOps
Build

Desktop
AnalysisDesign

Embedded

Software

66

Make Modeling and Simulation Easier

Enable Engineers

at Any Level to

Model and Simulate

Any System

1 Development

77

Powerful Interfaces to Explore Behavior
1 Development

88

Efficient

C/C++

Simulink Model

Application Logic

1 Development

99

Why Use Model-Based Design for Embedded System Development?

1010

Data gathered by Hewlett Packard referred by XB in 2017

https://xbsoftware.com/blog/why-should-testing-start-early-software-project-development/

Invalid Requirements

Start Here

1111

DESIGN

Environment Models

Physical Components

Algorithms

RESEARCH REQUIREMENTS

IMPLEMENTATION

Analog

Hardware
MCU DSP FPGA ASIC

SPICEVHDL, VerilogC, C++

INTEGRATION

T
E

S
T

 &
 V

E
R

IF
IC

A
T

IO
N

Quantifiable benefits of Model-Based Design

“Front-loaded development with
Model-Based Design enables us to
shorten development cycles and
minimize rework, which allows us
to deliver products earlier than our
competitors.”
Dr. Hisahiro Ito, Asst. GM.

System models reused across 54 products
worldwide. “Once we had moved to Model-
Based Design, we were able to use the same
core system in many different vehicles by
simply calibrating parameters such as the
vehicle dimensions and then re-generating
production code.”
Johan Hägnander, GM Engineering Europe

Model-Based Design enabled
Continental to verify our design in-
vehicle earlier, eliminating six months
of hardware development and one
prototype build. Verification time
was cut by up to 50 percent. 90
percent of application automatically
coded.
Thomas Ehl, Continental

“We use our system design model in
Simulink for ARP4754 to establish stable,
objective requirements. We save time by
using the model as the basis for our
software design model for DO-178—
from which we generate flight code—
and reusing validation tests for software
verification.”
Ronald Blanrue, Airbus Helicopters

1212

▪ High integrity applications development follows standards and
guidelines

▪ Standards and Guidelines have objectives for development process
activities

– Impose additional constraints on development

– Require creation of additional artifacts

– Require more thorough verification, validation and testing activities

▪ Standards and Guidelines require evidence that the objectives were

met to certify: compliance demonstration

Development Processes for High-Integrity Applications

ISO 26262

Functional Safety

Automotive

IEC 61508

Functional Safety

Industrial

Automation

EN 50128

Functional Safety

Railway

IEC 62061

Functional Safety

Machinery

IEC 62304

Functional Safety

Medical

DO 254

Functional Safety

Avionics

ISO 25119

Functional Safety

Agricultural

Machines

DO 178C

Functional Safety

Avionics

1313

1 Development

Systems Analysis

Requirements Systems Components

Test2

1414

Systems Analysis

Requirements

Toolbox

System

Composer
Simulink

Test2

1515

Test2
High Integrity Verification Workflow

1616

Test2

High Integrity Verification Workflow

1818

Requirements Traceability and Analysis

• Where are requirements implemented?

• Is design and requirements consistent?

• How are they tested?

1919

Why traceability matters…

Ensure application is complete, fully tested, and meets

customer requirements

Understand the impact of requirement changes to

implementation and test (i.e. “Digital Thread”)

Required to meet certification standards such as:

– ISO 26262, ASPICE for Auto

– DO-178C for Aerospace

– IEC 62304 in Medical

– Many others….

2020

Author, link, and validate requirements for designs and tests

Requirements Toolbox

Import / Export

Simulink, System Composer,

Stateflow, MATLAB Code

Generated

Code

External

Requirements

Requirements

Management

Tools

Author / Model

Simulink Test

MATLAB Unit Test

Trace

Report

Analyze

2121

Work with DOORS requirements within System Composer, Simulink

or Stateflow with Requirements Perspective

2222

Model-Based Systems Engineering

How to Model and Analyse System and Software Architecture

System Composer

2323

Model-Based Systems Engineering

System Architecture Models

(System Composer)

System requirements

(Simulink Requirements)

2424

Model-Based Systems Engineering

Software Architecture

(System Composer and Simulink)

Software Requirements

(Simulink Requirements)

2525

Model-Based Systems Engineering

2626

Model-Based Systems Engineering

▪ Architecture Models

▪ Profiles, stereotypes, properties

▪ Allocate requirements

▪ Views to focus on relevant parts

▪ Perform Analysis

System Composer

2727

Compliance to Standards and Guidelines

Is the design built right?

Is it too complex?

Is it ready for code generation?

2828

Automate verification with static analysis

Model Advisor

Check for:

• Readability and Semantics

• Performance and Efficiency

• Design Errors

• Clones

• And more……

Generate reports for audits

Result Statuses

29

Guidance Provided to Address Issues or Automatically Correct

3030

Edit-Time

Checking

Shift Verification Earlier With Edit-Time Checking

• Highlight violations as you edit

• Fix issues earlier

• Avoid rework

• Author and customize edit-time checks

C/C++/HDL

Generated code

Requirements
Requirements

Model
Implementation

Model

3131

Assess Quality with Metrics Dashboard

• Consolidated view of

metrics

• Size

• Compliance

• Complexity

• Identify where issues

may be

3232

Detect Design Errors with Formal Methods

▪ Find run-time design errors:
• Integer overflow

• Dead Logic

• Division by zero

• Array out-of-bounds

• Range violations

▪ Generate counter example to
reproduce error

3333

Prove That Design Meets Requirements

▪ Prove design properties using
formal requirement models

▪ Model functional and safety
requirements

▪ Generates counter example for
analysis and debugging

3434

Reviews, Static Analysis and Formal Verification at the Model Level

Uncover hard to find dead

logic and design flaws

Design Error

Detection

Property

Proving

Prove design meets

requirements

Model Metrics

• Analyze complexity,

size, reusability

• Assess design quality

Standards &

Guidelines Checks

• Automate compliance

to standards

• Customize checks

• Find and fix compliance

issues while you design

with Edit Time Checking

3535

Systematic Functional Testing

Does the design meet requirements?

Is it functioning correctly?

Is it completely tested?

3636

Typical Functional Testing Workflow in Model Based Design

3737

Test Case

Systematic Functional Testing with Simulink Test

AssessmentsInputs

Test Sequence

Data file (input)

Model Sim through SIL, PIL and HIL

Scale with Parallel Computing Toolbox and Continuous Integration

and more!
and more!

Signal Editor

Stateflow

Test Harness

Main Model

MATLAB Code

Data file baseline)

Test Assessment

Temporal Assessment

MATLAB Code

38

Main Model

Test Harness

Component

under test

▪ Isolate Component Under Test

▪ Synchronized, simulation test

environment

Test

Harnesses

Simulink Test

Develop, manage, and execute simulation-based tests

▪ Author, manage, organize tests

▪ Execute simulation, equivalence

and baseline tests

▪ Review, export, report

Test

Manager

Test Browser

Test Results

Reports

▪ Specify test inputs, expected

outputs, and tolerances

▪ Construct complex test

sequences and assessments

Test

Authoring

Signal Editor

Temporal Assessments

Test Sequence

Time-Series Data

3939

Test Sequence Block: Step-based and temporal test sequences

Test Sequence Block

4040

4141

4242

Simulink Coverage

Measure test coverage in models and generated code

•Measure test completeness

• Identify missing tests or

unintended functionality

Model

Coverage

Generated Code

Coverage

•Find untested generated code

•Map results from code to

model object

Highlighting and

Reporting

•View coverage results on diagrams

•Manage coverage results in

Simulink Test Manager

4343

Addressing Missing Coverage

Design
Model

Functional
Tests

Coverage Analysis
Coverage

Report
Partial Coverage

(less than 100%)

Test Generator
(Simulink Design Verifier)

Additional
Tests

Step 1

Step 2

Step 3 Coverage Analysis
Coverage

Report
Full Coverage

(100%)

4444

Automatically Address Missing Coverage

Generate additional tests automatically using Simulink Design Verifier from

within the Test Manager to increase coverage

▪ View coverage results in the Test Manager for existing tests

▪ Select coverage results and click Add Tests for Missing Coverage

4545

Demo: Generate Tests for Coverage from Test Manager

46

Simulink

Requirements

Simulink Test Manager – Integrates MathWorks V&V tools

Simulink

Coverage

Simulink Test

Simulink

Design Verifier

Simulink Check

4747

Efficient

C/C++

Simulink Model

Application Logic

Automatic Code Generation
Reliable and high performance, with flexible choice of targets

4848

Automatic Code Generation
Reliable and high performance, with flexible choice of targets

FPGA

CPU

Automatic

Code

Generation

GPU

PLC

algorithms

MATLAB

analytics

dynamic models

Simulink

physical systems

control logic

Stateflow

state machines

4949

Automatic Code Generation

5050

Requirements Traceability to Model, Code and Test Cases

Tests & Test Results

Generated Code

Traceability Matrix

x
Requirements

5151

Static Code Analysis with Polyspace

5252

Violations

Defects

Runtime errors

Reports

Polyspace is independent of the origin of code

Hand Code

Model-Based Design
(MATLAB, Simulink, Stateflow)

Polyspace
C, C++

C, C++

Model-Based V&V tools

Code Generation tools

#include <assert.h>

int speed(int k)

{

int i,j,v;

i = 2;

j = k+5;

while (i < 10) {

i++;

j+=3;

}

return 1 / (i-j);

}

5353

Can you find a bug?

Could there be a bug on this line?

5454

Consider the operation: x / (x - y)

Potential run-time errors

– Variables x and y may not be initialized

– An overflow on subtraction

– If x == y, then a divide by zero will occur

How to prove that run-time errors do or do not exist?

5555

Static Code Analysis with Polyspace

Results from Polyspace Code Prover

▪ Code metrics and standards

– Comment density, cyclomatic complexity,…

– MISRA and Cybersecurity standards

– Support for DO-178, ISO 26262, ….

▪ Bug finding and code proving

– Check data and control flow of software

– Detect bugs and security vulnerabilities

– Prove absence of runtime errors

5656

Polyspace is Integrated with Simulink

1. Launch Polyspace

from Simulink

5757

Polyspace is Integrated with Simulink

1. Launch Polyspace

from Simulink

2. Navigate from Code to

Model

5858

Equivalence Testing

Processor in the Loop

(PIL)

Software in the Loop

(SIL)

C/C++

Is the code functionally equivalent to model?

Is all the code tested?

59

Target

Board

Desktop

Computer

C/C++

Equivalence Testing

▪ Processor in the Loop (PIL)

– Numerical equivalence, model to target code

– Execute on target board

▪ Re-use tests developed for model to test code

▪ Collect code coverage

C/C++

Generated code

▪ Software in the Loop (SIL)

– Show functional equivalence, model to code

– Execute on desktop / laptop computer

PIL

SIL

Requirements
Requirements

Model
Implementation

Model

6060

Test2

High Integrity Verification Workflow

6161

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

Model Compare

3 Merge

6262

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

3-Way Model Merge

3 Merge

m

a b

6363

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

Compare Report

4 Review

6464

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

Projects

5 Submit

6565

From Desktop to Cloud for Model Based Design using CI/CD

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri
g
g
e
r

& many more…

6666

6767

Benefits of Continuous Integration

Repeatability

Quality

Speed

Collaboration

Audit Ready

6868

Model-Based Design enables high DevOps performance

▪ DevOps Goal: „Reduce the time between

committing a change and placing it in production,

while ensuring high quality and compliance„ Lead Time <1hour >6months

Change

Failure

Rate

High

Performers

Low

Performers

0-5% 15-30%

Source: state-of-devops-2021.pdf (google.com)

Online Panel Discussion: Agile Vehicle Software Development and Effective Integration of Models

Link to technical article

https://services.google.com/fh/files/misc/state-of-devops-2021.pdf
https://www.mathworks.com/videos/online-panel-discussion-agile-vehicle-software-development-and-effective-integration-of-models-1634921326013.html
https://www.mathworks.com/company/newsletters/articles/developing-autosar-compliant-software-for-a-hybrid-vehicle-battery-management-system-with-model-based-design.html

6969

CI workflow and tools are language- and domain-neutral

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

Each of these can “speak” MATLAB and

Model-Based Design

7070

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

Manage using Projects

Commit and Push to

Remote Repository

1 Development

2
Continuous

Integration

7171

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

Verification, Build and Test

Reports, Build Logs, Test Results,

Code Coverage

1 Development

2
Continuous

Integration

Back-to-
back &

HIL

Static
Code

Analysis

Generate
Code

Model
Test

Static
Model

Analysis

7272

Model-Based Design Reference Workflow

Software

Requirements

Software

Architecture

Integrated

Object Code

S
y
s
te

m

R
e

q
u

ir
e

m
e

n
ts

Model

MIL Unit & Integration Testing

Architecture Verification

Static Model
Analysis

Static Code
Analysis

SIL Back-to-Back Testing

Generated

C/C++ Code

PIL Back-To-Back Testing

Check

Models

Check

Design

Errors

MIL Test

Coverage Analysis
PIL Test

SIL Test

Static Code

Analysis

Gen

Code
Build

7373

Model-Based Design Reference Workflow

Check

Models

Check

Design

Errors

MIL Test

Coverage

Analysis PIL TestSIL Test

Static Code

Analysis
Gen

Code BuildSetup

▪ Define Process and Automate

– Identify Tasks

– Define Sequence

– Define Outputs

– Script the Tools

build.m

genCode.m

7474

1) Simple Setup

✓ Prebuilt Model-Based

Design pipeline

✓ Built-in Model-Based Design

tool support

✓ Tailorable

2) Desktop Integration with

Process Advisor app

✓ Local prequalification

✓ Local Debugging

3) 3rd Party CI Integration

✓ Jenkins/Gitlab YAML

✓ Optimized Model-Based

Design Builds

✓ CI Results Integration

CI/CD Automation for Simulink Check Support Package

Generate
Reports

Static
Code

Analysis

Generate
Code

Model
Test

Static
Model

Analysis

75

Fully Tailorable

• Modify existing steps

• Remove steps

• Add custom steps

Prebuilt & Tailorable MBD Pipeline

TASKS TOOLS

Check Model Standards Compliance Simulink Check

Run Tests Simulink Test

Generate Source Code Embedded Coder

Check Code Standards Compliance Polyspace Bug Finder

Generate Software Design Description Simulink Report Generator

Design Error Detection Simulink Design Verifier

Verify Model Update & Simulation Simulink

Check Model Metrics Model Advisor

Built-in Library of Tasks

• Static Analysis

• Code Generation

• Testing

Zero Upfront Code

Run My Custom
Task

Run
MIL Tests

Generate
Code …

76

MBD Pipeline Generation and Task Execution System

Capabilities

Pipeline of

Tasks

Build

System

Process

Model

MATLAB

Project

Execute in different workflows

• Interactive in Desktop (Process Advisor)

• Automated in CI

• Import results from CI into Desktop

Generate CI Pipeline

• Multiple Architectures

• Multiple Platforms

• OS agnostic

• Current: GitLab, Jenkins

• Future: GitHub, Azure Pipelines

Smart Orchestration

• Incremental execution

• Repeatable results

77

Pre-qualification with Process Advisor

Local Desktop Workflow

Process Model

MBD

Build Tool

20 2 3

10 1 1

2

3 2

5 1

15 4

15

15 1

15 1

93 7 15

60 1 5

Process

Advisor

Run Model
Standards Checking

Run
MIL Tests

Generate
Code …

7878

Integration and Run with common CI Systems

▪ Automated Pipeline Generation

▪ Execute Pipeline

in CI Systems like Jenkins

▪ Publish Results

▪ Debug on Desktop

20 2 3

10 1 1

2

3 2

5 1

15 4

15

15 1

15 1

93 7 15

60 1 5

7979

Continuous Integration Workflow with Model-Based Design – Invoke

pipeline

8080

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

MATLAB Jenkins Plugin

1 Development

2
Continuous

Integration

8181

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

Failure Summary:

Name Failed

===

LaneFollowingTestScenarios > Scenarios/LFACC_Curve_CutInOut_TooClose X

ERROR: MATLAB error Exit Status: 0x00000001

Build step 'Run MATLAB Tests' changed build result to FAILURE

Finished: FAILURE

Logs

1 Development

2
Continuous

Integration

3
Results Monitor

and Review

8282

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

1 Development

2
Continuous

Integration

3
Results Monitor

and Review
junit, TAP, Cobertura

8383

Continuous Integration Workflow with Model-Based Design

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri

g
g

e
r

1 Development

2
Continuous

Integration

3
Results Monitor

and Review

ReportsReports

8484

Source
Control

CI/CD
System

Webhook/Automation Trigger

Submit
Changes

Pipeline
Execution

Desktop

Interactive
Development

Setup
Performance
Results Integration
Debuggability

CI Debugging & Prequal

Monitor/Debug
Job Status & Results

Setup Deploy

Check

Models

Check

Design

Errors

MIL

Tests

Gen

Code

Setup Deploy

Check

Models

Check

Design

Errors

MIL

Tests

Gen

Code

CI/CD Automation Support Package

Prebuilt & Tailorable

MBD Pipeline

Check

Model MIL Test

Pipeline

Generation and

Build System

Integrated CI

Prequal

(Process Advisor)

Popular CI

System

Support

…

Simplifying Adoption and Optimizing CI/CD for Model-Based Design

8585

CI/CD Automation for Simulink Check Support Package

Build system to generate and optimally execute

the process in your CI system

Prequalification with Process Advisor

Prebuilt & Tailorable Model-Based Design Pipeline

Examples to run process on common CI Systems

Generate
Reports

Static
Code

Analysis

Generate
Code

Model
Test

Static
Model

Analysis

Process
Model

Learn more: Continuous Integration for Model-Based Design

https://www.mathworks.com/products/ci-cd-automation.html

8686

Other CI resources:

▪ Continuous Integration Solution Page

▪ Videos:
– Continuous Integration with MATLAB and Simulink

– Automotive DevOps for Model-Based Design with AWS

▪ Technical Articles:
– Continuous Integration for Verification of Simulink Models

– Continuous Integration for Verification of Simulink Models Using
GitLab

– Agile Model-Based Design: Accelerating Simulink Simulations in CI
Workflows

▪ Documentation:
– CI/CD Automation for Model-Based Design Support Package

– Continuous Integration Documentation Hub

– Tests for Continuous Integration

▪ Developer Zone: Continuous Integration

https://www.mathworks.com/solutions/continuous-integration.html
https://www.mathworks.com/videos/continuous-integration-with-matlab-and-simulink-1621602577778.html?s_tid=srchtitle_continuous%20integration_2
https://www.mathworks.com/videos/automotive-devops-for-model-based-design-with-aws-1653999780415.html?s_tid=srchtitle_devops_3
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.htmlhttps:/www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.htmlhttps:/www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.html
https://www.mathworks.com/company/newsletters/articles/agile-model-based-design-accelerating-simulink-simulations-in-continuous-integration-workflows.html
https://www.mathworks.com/company/newsletters/articles/agile-model-based-design-accelerating-simulink-simulations-in-continuous-integration-workflows.html
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/hardware-support/files/ci-cd-automation-simulink-check-support-package.pdf
https://www.mathworks.com/help/matlab/continuous-integration.html
https://www.mathworks.com/help/sltest/ug/tests-for-continuous-integration.html
https://blogs.mathworks.com/developer/category/continuous-integration/

8787

Getting Started: CI plugins and code examples

▪ Code examples

– CI configuration examples

– CI with Simulink

– Code coverage using Codecov

▪ CI plugins

– Azure DevOps

– CircleCI

– GitHub Actions

– Jenkins

– Travis CI

▪ Reference architectures (AWS, GCP, …)

– https://github.com/mathworks-ref-arch

http://github.com/mathworks/ci-configuration-examples
https://github.com/mathworks/Continuous-Integration-Verification-Simulink-Models
https://github.com/mathworks/matlab-codecov-example
https://marketplace.visualstudio.com/items?itemName=MathWorks.matlab-azure-devops-extension
https://circleci.com/developer/orbs/orb/mathworks/matlab
https://github.com/matlab-actions/overview
https://plugins.jenkins.io/matlab/
https://docs.travis-ci.com/user/languages/matlab/
https://github.com/mathworks-ref-arch

8888

Relevant Training Classes

▪ Simulink Fundamentals – introduction to designing models using Simulink

▪ Simulink Model Management and Architecture – Requirements Toolbox, Simulink Projects,
Architectural Choices, Data Management, Simulink Report Generator

▪ Simulation-Based Testing with Simulink – includes Simulink Test

▪ Design Verification with Simulink – Simulink Design Verifier

▪ Embedded Coder for Production Code Generation – generating and using code from Simulink
models

▪ Polyspace for C/C++ Code Verification – static analysis of hand code and automatically-
generated code

▪ Applying Model-Based Design for ISO 26262 (available upon request)

https://www.mathworks.com/learn/training/simulink-fundamentals.html
https://www.mathworks.com/training-schedule/simulink-model-management-and-architecture.html
https://www.mathworks.com/training-schedule/simulation-based-testing-with-simulink.html
https://www.mathworks.com/training-schedule/design-verification-with-simulink?s_tid=srchtitle
https://www.mathworks.com/training-schedule/embedded-coder-for-production-code-generation-two-day.html
https://www.mathworks.com/training-schedule/polyspace-for-c-cpp-code-verification.html

8989

Software-Defined Vehicle

Customer expectations
• Clean and Safe mobility

• Digital Life continuity

Technology & Innovation
• Electrification

• Autonomy

• Connectivity

Business opportunity
• App stores, SW features on demand

• SW services subscription plans

invest

demand

monetize

90

SOA – What’s it all about?

▪ With SOA, applications are standalone processes that

provide and/or require services distributed across the

vehicle computing platform and the cloud

▪ SOA provides flexibility to add, remove, or update

applications without impacting the entire, typically large,

software system

▪ SOA is used by multiple industrial standards:

– AUTOSAR Adaptive Platform

– DDS (Data Distribution Services)

– ROS (Robot Operating System)

9191

Middleware

Simulink: Deploy software to different targets and standards

Simulink

AUTOSAR Classic

RTE

Basic Software

Application Software

. . . .

GPUFPGA

µC

AUTOSAR Adaptive / ROS / DDS

Software

Legacy ECU

Hardware

9292

MathWorks Consulting
Certification Advisory Service Overview

▪ MathWorks Consulting will help you to:

– Leverage Model-Based Design and supporting

tools to their fullest extent to maximize ROI

– Reduce duplicated and manual effort

– Avoid common pitfalls by providing proven best

practices for Model Based Design, system

engineering and development of safety critical

software with MBD

ISO 26262 Process Deployment Advisory Service

DO-178 Certification Advisory Service

https://www.mathworks.com/services/consulting/proven-solutions/iso26262.html
https://www.mathworks.com/services/consulting/proven-solutions/do178.html

9393

For further details, Q&A and

feedback kindly reach out to

Gaurav Ahuja
gahuja@mathworks.com

Application Engineering Group

LinkedIn

Rajat Arora
rarora@mathworks.com

Application Engineering Group

LinkedIn

mailto:gahuja@mathworks.com
https://www.linkedin.com/in/gaurav-ahuja-43922a27/
mailto:rarora@mathworks.com
https://www.linkedin.com/in/rajatarora05/

96

Share the EXPO experience

#MATLABEXPO

[profile handle] [profile handle] [profile handle] [profile handle] [profile handle]

	Default Section
	Slide 0
	Slide 1: Tooling and approaches must address today’s challenges and trends
	Slide 2: There are three key pieces to
	Slide 3: In Model-Based Design, a system model is at the center of the workflow
	Slide 4: Traditional Model Based Design Development
	Slide 5: Scaling Development To Address Complexity

	Intro
	Slide 6: Make Modeling and Simulation Easier
	Slide 7: Powerful Interfaces to Explore Behavior
	Slide 8
	Slide 9: Why Use Model-Based Design for Embedded System Development?
	Slide 10
	Slide 11: Quantifiable benefits of Model-Based Design
	Slide 12: Development Processes for High-Integrity Applications
	Slide 13: Systems Analysis
	Slide 14: Systems Analysis
	Slide 15: High Integrity Verification Workflow
	Slide 16: High Integrity Verification Workflow

	Workflow
	Slide 18: Requirements Traceability and Analysis
	Slide 19: Why traceability matters…
	Slide 20: Author, link, and validate requirements for designs and tests
	Slide 21: Work with DOORS requirements within System Composer, Simulink or Stateflow with Requirements Perspective

	MBSE
	Slide 22: Model-Based Systems Engineering
	Slide 23: Model-Based Systems Engineering
	Slide 24: Model-Based Systems Engineering
	Slide 25: Model-Based Systems Engineering
	Slide 26: Model-Based Systems Engineering

	check & SLDV
	Slide 27: Compliance to Standards and Guidelines
	Slide 28: Automate verification with static analysis
	Slide 29: Guidance Provided to Address Issues or Automatically Correct
	Slide 30: Shift Verification Earlier With Edit-Time Checking
	Slide 31: Assess Quality with Metrics Dashboard
	Slide 32: Detect Design Errors with Formal Methods
	Slide 33: Prove That Design Meets Requirements
	Slide 34: Reviews, Static Analysis and Formal Verification at the Model Level
	Slide 35: Systematic Functional Testing
	Slide 36: Typical Functional Testing Workflow in Model Based Design
	Slide 37: Systematic Functional Testing with Simulink Test
	Slide 38
	Slide 39: Test Sequence Block: Step-based and temporal test sequences
	Slide 40
	Slide 41
	Slide 42: Simulink Coverage Measure test coverage in models and generated code
	Slide 43: Addressing Missing Coverage
	Slide 44: Automatically Address Missing Coverage
	Slide 45: Demo: Generate Tests for Coverage from Test Manager
	Slide 46: Simulink Test Manager – Integrates MathWorks V&V tools

	codegen
	Slide 47: Automatic Code Generation Reliable and high performance, with flexible choice of targets
	Slide 48: Automatic Code Generation Reliable and high performance, with flexible choice of targets
	Slide 49: Automatic Code Generation
	Slide 50: Requirements Traceability to Model, Code and Test Cases

	workflow_test
	Slide 51: Static Code Analysis with Polyspace
	Slide 52: Polyspace is independent of the origin of code
	Slide 53: Can you find a bug?
	Slide 54: Consider the operation: x / (x - y)
	Slide 55: Static Code Analysis with Polyspace
	Slide 56: Polyspace is Integrated with Simulink
	Slide 57: Polyspace is Integrated with Simulink
	Slide 58: Equivalence Testing
	Slide 59: Equivalence Testing
	Slide 60: High Integrity Verification Workflow
	Slide 61: Continuous Integration Workflow with Model-Based Design
	Slide 62: Continuous Integration Workflow with Model-Based Design
	Slide 63: Continuous Integration Workflow with Model-Based Design
	Slide 64: Continuous Integration Workflow with Model-Based Design

	DevOps_CI_CD_Final
	Slide 65: From Desktop to Cloud for Model Based Design using CI/CD
	Slide 66
	Slide 67: Benefits of Continuous Integration
	Slide 68: Model-Based Design enables high DevOps performance
	Slide 69: CI workflow and tools are language- and domain-neutral
	Slide 70: Continuous Integration Workflow with Model-Based Design
	Slide 71: Continuous Integration Workflow with Model-Based Design
	Slide 72: Model-Based Design Reference Workflow
	Slide 73: Model-Based Design Reference Workflow
	Slide 74: CI/CD Automation for Simulink Check Support Package
	Slide 75: Prebuilt & Tailorable MBD Pipeline
	Slide 76: MBD Pipeline Generation and Task Execution System
	Slide 77: Pre-qualification with Process Advisor
	Slide 78: Integration and Run with common CI Systems
	Slide 79: Continuous Integration Workflow with Model-Based Design – Invoke pipeline
	Slide 80: Continuous Integration Workflow with Model-Based Design
	Slide 81: Continuous Integration Workflow with Model-Based Design
	Slide 82: Continuous Integration Workflow with Model-Based Design
	Slide 83: Continuous Integration Workflow with Model-Based Design
	Slide 84: Simplifying Adoption and Optimizing CI/CD for Model-Based Design
	Slide 85: CI/CD Automation for Simulink Check Support Package
	Slide 86: Other CI resources:
	Slide 87: Getting Started: CI plugins and code examples
	Slide 88: Relevant Training Classes

	SDV_Brief
	Slide 89: Software-Defined Vehicle
	Slide 90
	Slide 91: Simulink: Deploy software to different targets and standards
	Slide 92: MathWorks Consulting Certification Advisory Service Overview
	Slide 93
	Slide 96

