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Agenda

▪ Introduction to Autonomous systems

▪ Artificial Intelligence

– Deep Learning: Acceleration of motion planning using deep learning

▪ Reinforcement Learning

– Developing controller for automated parking valet

▪ Deployment of AI models to embedded devices
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Key subsystems of an autonomous systems

Algorithms

Perception Sensor Fusion

Planning Decision & Controls

Steering

Braking

Acceleration
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Key subsystems of an automated driving system

Perception
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Key subsystems of an automated driving system

Sensor Fusion

Perception
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Key subsystems of an automated driving system

Learning Algorithms

Optimization

Sensor Fusion

Perception

Planning
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Key subsystems of an automated driving system

Sensor Fusion

Perception

Planning

Controls

Steering

Braking

Acceleration
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Key subsystems of an automated driving system

Sensor Fusion

Perception

Planning

Controls
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Challenges in developing and testing autonomous systems

* Saarland University

Complexity of 
subsystems

AI and traditional 
algorithms

Diverse, disconnected 
tools and workflows

Recreating difficult 
real-world scenarios

Long tail of edge 
cases*

Billions of kms for 
reliability test**

RAND report**

https://www.rand.org/content/dam/rand/pubs/research_reports/RR1400/RR1478/RAND_RR1478.pdf
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Artificial Intelligence as Key Enabler for Autonomous Systems

Algorithms

Perception Sensor Fusion

Planning Decision & Controls

Steering

Braking

Acceleration

Object detection

Semantic segmentation

GANs

And so on …
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Accelerate Motion Planning with Deep Learning

RRT* Path

Uniform Sampling (λ=0)

RRT* Path 

DL Based Sampling (λ = 0.9)

https://www.mathworks.com/help/releases/R2023a/deeplearning/ug/accelerate-motion-planning-with-deep-learning-based-sampler.html?s_tid=doc_srchtitle
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Automated Parking Valet using Reinforcement Learning

https://www.mathworks.com/help/reinforcement-learning/ug/train-ppo-agent-for-automatic-parking-valet.html
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Agenda

▪ Introduction to Autonomous systems

▪ Artificial Intelligence

– Deep Learning: Acceleration of motion planning using deep learning

▪ Reinforcement Learning

– Developing controller for automated parking valet

▪ Deployment of AI models to embedded devices
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Machine Learning is a key technology driving the AI megatrend 

ARTIFICIAL INTELLIGENCE (AI)

Any technique that enables 

machines to mimic human 

intelligence

MACHINE LEARNING

Statistical methods that enable machines to “learn” tasks from data without explicitly 

programming

UNSUPERVISED LEARNING 

(No Labeled Data )
SUPERVISED LEARNING 

(Labeled Data )

REINFORCEMENT LEARNING

(Interaction Data) 

DEEP LEARNING

(Neural networks with 

many layers)

https://www.mathworks.com/discovery/unsupervised-learning.html
https://www.mathworks.com/discovery/reinforcement-learning.html
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Brief Overview for AI-driven system design

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Integration with 

complex systems

System verification 

and validation

System simulation

Simulation & Test

Data cleansing and 

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud, desktop

Deployment

• Reference application for integration

• Integrating AI into Simulink

• Labeller apps

• Unreal co-simulation

• Data generation- Virtual sensor 

modelling (Camera, LIDAR, 

RADAR)

• Simscape

• Deep network designer

• Experiment manager/ Classification 

Learner

• Interoperability between DL toolbox 

and other frameworks

• CPUs, (ARM_ACL)

• Cloud (on-premise, service providers)

• Microservice Docker Containers

• Deploy Imported TensorFlow Model with 

MATLAB Compiler

https://www.mathworks.com/help/releases/R2023a/driving/automated-driving-applications.html
https://www.mathworks.com/help/releases/R2023a/deeplearning/deep-learning-with-simulink.html?s_tid=doc_srchtitle
https://www.mathworks.com/help/vision/ug/choose-a-labeling-app.html
https://in.mathworks.com/help/driving/ug/visualize-depth-semantic-segmentation-3d-simulation.html
https://in.mathworks.com/help/driving/ref/simulation3dcamera.html
https://www.mathworks.com/help/driving/ref/simulation3dlidar.html
https://www.mathworks.com/help/driving/ref/simulation3dprobabilisticradar.html
https://www.mathworks.com/help/deeplearning/ref/deepnetworkdesigner-app.html
https://www.mathworks.com/help/deeplearning/ref/experimentmanager-app.html
https://www.mathworks.com/help/releases/R2023a/stats/classificationlearner-app.html
https://www.mathworks.com/help/releases/R2023a/stats/classificationlearner-app.html
https://www.mathworks.com/help/deeplearning/ug/interoperability-between-deep-learning-toolbox-tensorflow-pytorch-and-onnx.html
https://www.mathworks.com/help/deeplearning/ug/interoperability-between-deep-learning-toolbox-tensorflow-pytorch-and-onnx.html
https://in.mathworks.com/help/coder/deep-learning-with-matlab-coder.html
https://in.mathworks.com/help/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/videos/deploying-generated-code-on-aws-gpus-for-deep-learning-1558697671292.html
https://www.mathworks.com/videos/create-microservice-docker-containers-with-matlab-1647931020285.html
https://www.mathworks.com/help/deeplearning/ug/deploy-imported-tensorflow-network-with-matlab-compiler.html
https://www.mathworks.com/help/deeplearning/ug/deploy-imported-tensorflow-network-with-matlab-compiler.html
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Accelerate Motion Planning with Deep Learning

Random Maze Dataset 
representing occupancy map, 

start & goal locations

Uniformly Sampled space
(used by conventional motion 

planning algorithms e.g., RRT/ RRT*)

RRT* 
(Rapidly Exploring Random Tree)

Can RRT* with Deep Learning based Sampler outperform

the one with uniform sampling ?
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Accelerate Motion Planning with Deep Learning

Random Maze Dataset 
representing occupancy map, 

start & goal locations

DL-Based Sampler RRT* 
(Rapidly Exploring Random Tree)

Can RRT* with Deep Learning based Sampler outperform

the one with uniform sampling ?
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AI Workflow

DNN

Train: Iterate till you find the best model using historical data
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AI Workflow

Trained 

DNN

RRT* 

Planner

Predict: Integrate trained models into applications 
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Path Planning

PRM (Probabilistic Roadmap)
Sampling-based planning. Search for 

shortest path in a densely constructed graph

RRT (Rapidly-Exploring Random Tree)

Nearest neighbor search

tree incrementally from samples 

randomly drawn from a given state space

RRT*
Converges to an optimal 

solution in terms of the state 

space distance

Bidirectional RRT
Variant of RRT creating two search 

trees starting from both start and goal 

states simultaneously

Grid-based A*
Plan the shortest collision-

free path through an 

obstacle grid map

Graph-based A*
Plan shortest routes in a 

graph network

Hybrid A*
Grid search method to 

generate a smooth path in a 

given 2-D space for vehicles 

with nonholonomic constraints

Control-based RRT
Plan kinematically and 

dynamically feasible paths 

with custom kinematics and 

control policies

https://www.mathworks.com/help/nav/ref/plannerprm.html
https://jp.mathworks.com/help/nav/ref/plannerrrt.html
https://jp.mathworks.com/help/nav/ref/plannerrrtstar.html
https://www.mathworks.com/help/nav/ref/plannerbirrt.html
https://www.mathworks.com/help/nav/ref/plannerastargrid.html
https://www.mathworks.com/help/releases/R2023a/nav/ref/plannerastar.html
https://jp.mathworks.com/help/nav/ref/plannerhybridastar.html
https://www.mathworks.com/help/nav/ref/plannercontrolrrt.html
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Data Generation with RRT*

Data 

Preparation
1

Simulation-

generated data

Data cleansing 

and preparation

Human insight
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Data Generation with RRT*

Data 

Preparation
1

Simulation-

generated data

Data cleansing 

and preparation

Human insight

*No. of samples to be generated = 2000
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Data Generation with RRT*

Data 

Preparation
1

Simulation-

generated data

Data cleansing 

and preparation

Human insight
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Start with a complete set of algorithms and pre-built models

AI Modeling2

Model design 

and tuning

Hardware 

accelerated 

training

Interoperability

Machine learning
Trees, Naïve Bayes, SVM…

Deep learning
CNNs, GANs, LSTM, MIMO…

Reinforcement learning
DQN, A2C, DDPG…

Regression
Linear, nonlinear, trees…

Unsupervised learning
K-means, PCA, GMM…

Predictive maintenance
RUL models, condition indicators…

Bayesian optimization

Image classification models
AlexNet, GoogLeNet, VGG, SqueezeNet, 

ShuffleNet, ResNet, DenseNet, Inception…

Object detection
Vehicles, pedestrians, faces…

Semantic segmentation
Roadway detection, land cover classification, 

tumor detection…

Signal and speech processing
Denoising, music genre recognition, keyword 

spotting, radar waveform classification…

…and more…

Algorithms Pre-built models

Reference examples
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Deep Neural Network Training
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Experiment Manager



262626

Importing Pretrained Network for Labelling Automation

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Keras importer

PyTorch importer

Framework Interoperability bridges the gap between data science, engineering and production

PyTorch

TensorFlow-

Keras

TensorFlow

https://www.mathworks.com/products/deep-learning.html#frm
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Autoencoders

Encoder Decoder

𝑧1
𝑧2.
..
𝑧𝑘

Input Images Image Encodings / 

Latent Representation

Reconstructed Images
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Variational Autoencoders for Image Re-Generation

Encoder Decoder

𝑧1
𝑧2.
..
𝑧𝑘

Fully

Connected

𝝁

log𝜎2

Image 

Encoding

Latent State

Downsampling Upsampling / Image Generation

MATLAB Example: Train Variational Autoencoder (VAE) to Generate Images

https://www.mathworks.com/help/deeplearning/ug/train-a-variational-autoencoder-vae-to-generate-images.html
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Conditional Variational Autoencoders (CVAE)

Encoder Decoder𝝁

log 𝜎2

Image 

Encoding

Input State

(𝒙)

Input 

Condition (y)

Latent State ‘z’

KL (Kullback–Leibler) 

divergence loss

𝑫𝑲𝑳 𝒛 | 𝑵(𝟎, 𝟏)

Predicted 

State (ෝ𝒙)

Mean-squared loss

𝒙 − ෝ𝒙 𝑻(𝒙 − ෝ𝒙)/𝑵
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Conditional Variational Autoencoders (CVAE)

Encoder Decoder𝝁

log 𝜎2

Image 

Encoding

Input State

(𝒙)

Input 

Condition (y)

Latent State ‘z’

Predicted 

State (ෝ𝒙)

Occupancy Map

Start 

Goal

Optimal Path 

Generated by RRT*

Nodes from optimal path
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Conditional Variational Autoencoders (CVAE)

Encoder Decoder𝝁

log 𝜎2

Image 

Encoding

Input State

(𝒙)

Input 

Condition (y)

Latent State ‘z’

Predicted 

State (ෝ𝒙)

Occupancy Map

Start 

Goal

Optimal Path 

Generated by RRT*

Nodes from optimal path
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Conditional Variational Autoencoders (CVAE)

Encoder Decoder𝝁

log 𝜎2

Image 

Encoding

Input State

(𝒙)

Input 

Condition (y)

Latent State ‘z’

Predicted 

State (ෝ𝒙)

Occupancy Map

Start 

Goal

Optimal Path 

Generated by RRT*

Nodes from optimal path
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Conditional Variational Autoencoders (CVAE)

Encoder Decoder𝝁

log 𝜎2

Image 

Encoding

Input State

(𝒙)

Input 

Condition (y)

Latent State ‘z’

Predicted 

State (ෝ𝒙)

Occupancy Map

Start 

Goal

Optimal Path 

Generated by RRT*

Nodes from optimal path
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Decoder Network for Generating Optimal States

Latent state

Normally 

Distributed 

Random numbers

4X400

Occupancy Map

Start

Goal

Decoder
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More Examples on the Test Data
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Choose the Learnable Sampling Factor

Mix both learned samples and uniform samples in a certain proportion λ, to bias the planner towards 

the optimal solution while also guaranteeing to find a solution
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RRT* with Uniform & Learned Sampling

Uniform Sampling (λ = 0) DL based Sampling (λ = 0.9)
90% from CVAE; 10% Uniform
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Accelerate Motion Planning with Deep Learning

RRT* Path

Uniform Sampling (λ=0)

RRT* Path 

DL Based Sampling (λ = 0.9)

2-3X Faster*

Less iterations

Less sampling states

* Animation runtime just reflects the ratio of treeData (as the animation was created during post-processing), whereas the elapsed time reflects the actual compute time
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Accelerate Motion Planning with Deep Learning

• Faster Convergence to finding a valid path with Deep Learning based sampling

• For 500 samples, Uniform sampling can’t find a path for each map & each run

• Learned sampling path cost function much better than uniform sampling
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Agenda

▪ Introduction to Autonomous systems

▪ Artificial Intelligence

– Deep Learning: Acceleration of motion planning using deep learning

▪ Reinforcement Learning

– Developing controller for automated parking valet

▪ Deployment of AI models to embedded devices
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What is Reinforcement Learning?

▪ What is Reinforcement 

Learning?

– Type of machine learning 

that trains an ‘agent’

through repeated 

interactions with an 

environment

▪ How does it work?

– Through a trial & error 

process that uses a reward 

system to maximize 

success
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Reinforcement Learning enables the use of Deep Learning for 

Controls and Decision Making Applications

A.I. Gameplay

Controls

Robotics

Autonomous driving
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A Practical Example of Reinforcement Learning
Training an Automated Parking Valet Controller

▪ Vehicle’s computer learns how to drive…                                                 

(agent)

▪ using sensor readings from LIDAR, cameras,…         

(observations)

▪ that represent road conditions, vehicle position,… 

(environment)

▪ by generating steering, braking, throttle commands,… 

(action)

▪ to avoid collisions and lane deviation… 

(reward).

AGENT

ENVIRONMENT

ACTION

REWARD

OBSERVATIONS

The goal of Reinforcement learning is for the agent to find an optimal algorithm for 

performing a task
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Drawing Parallels- RL and Controls

Reinforcement Learning ToolboxTM
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Simulate trained agent for automatic parking

https://www.mathworks.com/help/reinforcement-learning/ug/train-ppo-agent-for-automatic-parking-valet.html
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Simulink Model Bench for Parking Valet
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Camera

𝜑1

𝜑2

𝑑1

𝑑2

Camera Parameters

1. Depth (𝑑𝑚𝑎𝑥)

2. Field of view (𝜑𝑚𝑖𝑛, 𝜑𝑚𝑎𝑥)

A spot in within range if

𝑑𝑖 ≤ 𝑑𝑚𝑎𝑥

𝜑𝑚𝑖𝑛 ≤ 𝜑𝑖 ≤ 𝜑𝑚𝑎𝑥

Current pose

True/False

Target pose
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Lidar

Lidar Parameters

1. Parking environment

2. No. of lidar readings

3. Maximum lidar distance

4. Geometry of the ego car

5. Geometry of obstacles

Current x pose

Vector of lidar distancesCurrent y pose

Current heading
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RL Controller

Agent/ Controller

ENVIRONMENT

ACTION

REWARD

OBSERVATIONS

Observations:
• Position errors of the ego vehicle wrt the target pose

• True heading angle θ, and the 

• Lidar sensor readings.

Actions:
• Constant Speed: 2 m/s

• Steering angle: range between +/- 45 degrees in steps of 15 degrees

Reward:

(0 or 1) indicates whether the vehicle has parked

Indicates collision

Steering angle
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Environment
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Mapping different parking locations

Observations for different parking spot locations could be 

coordinate transformations on vehicle pose   
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Choosing RL agent

Selection criteria:

1. Discrete or continuous spaces?

2. Complexity of algorithm

3. Algorithm-specific reasons

▪ PPO has more stable updates but requires more training

▪ TD3 is an improved, more complex version of DDPG

▪ SAC is an improved, more complex version of DDPG that generates stochastic policies

Q-learning DQN PPO
Discrete action space

Discrete observation space

DQN PPO
Discrete action space

Continuous observation space
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Built-in Reinforcement Learning Agents

N Type Observation Space Action Space

Deep Q-Networks (DQN) Value-based Continuous/Discrete Discrete

Q Learning Value-based Continuous/Discrete Discrete

SARSA Value-based Continuous/Discrete Discrete

Policy Gradient

(REINFORCE)
Policy-based Continuous/Discrete Continuous/Discrete

Deep Deterministic Policy 

Gradient (DDPG)
Actor critic Continuous/Discrete Continuous

Actor Critic

(A2C & A3C as well)
Actor critic Continuous/Discrete Continuous/Discrete

Proximal Policy Optimization 

(PPO)
Actor critic Continuous/Discrete Continuous/Discrete

Twin Delayed Deep 

Deterministic Policy Gradient 

(TD3)

Actor critic Continuous/Discrete Continuous

Soft Actor Critic (SAC) Actor critic Continuous/Discrete Continuous

Agents

Tables can only be used with discrete observations and actions
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Scaling environment- Unreal Cosimulation

Train PPO Agent for Automatic Parking Valet Original Example Unreal Engine – Large Parking Lot Scene
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Incorporating 3D Simulation
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Reinforcement Learning Environment

29-37 NA NA NA

15-28 X̄ = 41 - X Ȳ = -64.485 - Y θ̅ = θ - π

1-14 X̄ = X Ȳ = Y + 20.41 θ̅ = θ

38-46 X̄ = 41 - X Ȳ = -84.48 - Y θ̅ = θ - π

Training Environment Coordinate Transformations on Vehicle Pose

Vehicle Initial Pose during Training

Reward Function
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Training the Agent

Training from Scratch, Hyperparameters from Original Example

SampleTime Ts

ExperienceHorizon 200

ClipFactor 0.2

EntropyLossWeight 0.01

MiniBatchSize 64

NumEpoch 3

AdvantageEstimateMethod gae

GAEFactor 0.95

DiscountFactor 0.998

MaxEpisodes 10000

MaxStepsPerEpisode 200

ScoreAveragingWindowLength 200

Plots training-progress

StopTrainingCriteria AverageReward

StopTrainingValue inf

Training Options

PPO Agent Options
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Training the Agent cont.

Training from Scratch, Changed Parked Vehicle Dimensions Testing the Agent
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Final Agent Training

▪ Retrained agent from 

original example

▪ Again used hatchback 

dimensions for parked cars

▪ Highest average reward

▪ Appeared to park 

successfully during test

Retraining Agent from Original Example
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Final Example Demo 1
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Final Example Demo 2
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Design reinforcement learning agents for controls

Train Deep Deterministic 

Policy Gradient (DDPG) Agent 

for Adaptive Cruise Control

Reinforcement Learning ToolboxTM

Train DDPG Agent for Path 

Following Control

Reinforcement Learning ToolboxTM

Imitate MPC Controller for Lane 

Keep Assist using a Neural 

Network

Reinforcement Learning ToolboxTM

Model Predictive Control ToolboxTM

DDPG Agent DDPG Agent Neural Network

https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html
https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html
https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html


6464

Deploy to Any Processor with Best-in-class Performance

AI models in MATLAB and Simulink can be deployed on embedded devices, edge devices, 

enterprise systems, the cloud, or the desktop

FPGA

CPU

GPU

Code 

Generation

Library 

Free 
Any target
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Intel Xeon Desktop PC Raspberry Pi Board

Android Phone

NVIDIA Jetson TX1 board

AI deployed on Embedded Devices

▪ Need code that takes advantage 

of:

– NVIDIA® CUDA libraries, including 

cuDNN and TensorRT

– Intel® Math Kernel Library for Deep 

Neural Networks (MKL-DNN) for 

Intel processors

– ARM® Compute library for ARM 

processors
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Technology Showcase Demo Booths

Robotics and 

Autonomous 

systems

Artificial 

Intelligence
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© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. 

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be 

trademarks or registered trademarks of their respective holders.

Thank you

Dr Rishu Gupta, MathWorks Peeyush Pankaj, MathWorks
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