
0

Vamshi Kumbham, MathWorks

Accelerating Production of Industry-Compliant Embedded Software

Using Model-Based Design

Vaishnavi Hanumapalli Rajasimha, MathWorks

11

22

Shift-Left Verification

33

Mechanical

Components

CAD

Electrical

Components

EDA

INTEGRATION AND TEST

SPECIFICATIONS

DESIGN

RESEARCH REQUIREMENTS

FPGA

ASIC

HDL

IMPLEMENTATION

Embeddable

Algorithms

Algorithm

Design

Traditional software development vs. Model-Based Design

CPU

MCU

C/C++

GPU

CUDA

INTEGRATION

IMPLEMENTATION

CPU MCU FPGA ASIC

CUDAVHDL/VerilogC/C++

GPU

DESIGN

RESEARCH REQUIREMENTS

Physiological Models

Physical Components

Algorithms

T
E

S
T

 A
N

D
 V

E
R

IF
IC

A
T

IO
N

Source: Simulation and Model-Based Design

https://www.mathworks.com/products/simulink.html

44

Simulink is for Simulation of Every Project:

Source: Simulation and Model-Based Design

https://www.mathworks.com/products/simulink.html

55

Adoption of Model-Based Design across Industries

LS Automotive Reduces Development Time for Automotive Component
Software with Model-Based Design

Specification errors detected early

EVLO Energy Storage Accelerates Development of Energy Management
Systems with Model-Based Design

Continuously improve software quality

Airbus Helicopters Accelerates Development of DO-178B Certified Software
with Model-Based Design

Software testing time cut by two-thirds

More User Stories: www.mathworks.com/company/user_stories.html

https://www.mathworks.com/company/user_stories.html

66

Concept to Deployment:

77

Developing Control Software for Power Window

88

What we learn today

Accelerating Production of Embedded Software

▪ Simulate and test your system early and often

▪ Validate your design with physical models

▪ Generate and deploy directly to your embedded
system

▪ Verify the generated code for any Run-Time
issues and comply to Coding Standards

▪ Maintain a digital thread with traceability
throughout

99

Modeling &

Simulation

Code

Generation &

Code

Verification

Testing &

Validation

There are three key pieces to

Simulation and Model-Based Design

Model-Based Design

1010

System Requirements:
Modeling&
Simulation

▪ The window must fully open and fully

close within 4 s.

▪ If the up is issued for between 200 ms

and 1 s, the window must fully open. If

the down command is issued for

between 200 ms and 1 s, the window

must fully close.

▪ The window must start moving 200

ms after the command is issued.

▪ The force to detect when an object is

present is less than 100 N.

▪ When closing the window, if an object

is in the way, stop closing the window

and lower the window by

approximately 10 cm

1111

Requirements and Model Linking:

Imported Requirements

Badges

Detailed Requirement

Modeling&
Simulation

1212

Author, link, and validate for designs and tests

Requirements Toolbox

Import / Export

Simulink, System Composer,

Stateflow, MATLAB Code

Generated

C/C++ Code

External

Requirements

Requirements

Management

Tools

Author / Model

Simulink Test,

MATLAB Test,

MATLAB Unit Test

Trace

Report

Analyze

Modeling&
Simulation

1313

Requirements Toolbox

Author, link, and validate requirements for designs and tests

Requirements

Traceability

• Trace to design, code

and test

• Understand the

impact of changes to

design and test

Import and Author

Requirements

• Author requirements

in MATLAB/Simulink

• Integrate with

requirements tools

Coverage and Impact

Analysis

• Identify gaps in design

or test

• Respond to

requirement changes

Model

Requirements

• Specify formal

requirements

• Validate earlier with

simulation

Examples Examples Examples Examples

Modeling&
Simulation

https://www.mathworks.com/help/slrequirements/getting-started-with-requirements-toolbox.html
https://www.mathworks.com/help/slrequirements/examples.html?category=requirements-traceability-and-consistency
https://www.mathworks.com/help/slrequirements/examples.html?category=requirements-traceability-and-consistency
https://www.mathworks.com/help/slrequirements/examples.html?category=requirements-based-verification

1414

Modelling Software Requirements:
Modeling&
Simulation

1515

Create Interactive model for Simulation Analysis: Modeling&
Simulation

1616

Run Model Advisor Checks:

Model Advisor

Check for:

• Readability and Semantics

• Performance and Efficiency

• Design Errors

• Clones

• And more……

Generate reports for audits

Result Statuses

Modeling&
Simulation

1717

Simulink Check

Automate verification and correct models to improve design

Model Slicer

• Simplify models to

isolate behavior

• Debug test failures

Dashboards

• Assess

completeness and

quality

• Analyze complexity,

size, reusability

Standards &

Guidelines Checks

• Automate standards

compliance

• Find and fix issues

while you design

• Customize checks

Model Refactoring

• Find clones and

modeling patterns

• Refactor to improve

maintainability

Examples Examples Examples Examples

Modeling&
Simulation

https://www.mathworks.com/help/slcheck/examples.html?category=check-model-compliance
https://www.mathworks.com/help/slcheck/examples.html?category=model-testing-metrics&s_tid=CRUX_topnav
https://www.mathworks.com/help/slcheck/examples.html
https://www.mathworks.com/help/slcheck/examples.html?category=functional-dependency-isolation

1818

✓ Modeling

&

Simulation

Code

Generation &

Code

Verification

Testing &

Validation

There are three key pieces to

Simulation and Model-Based Design

Model-Based Design

1919

Test Case

Systematic Functional Testing with Simulink Test

AssessmentsInputs

Test Sequence

Data file (input)

Model Sim through SIL, PIL and HIL

Scale with Parallel Computing Toolbox and Continuous Integration

and more!
and more!

Signal Editor

Stateflow

Test Harness

Main Model

MATLAB Code

Data file baseline)

Test Assessment

Temporal Assessment

MATLAB Code

Test &
Verification

2020

Test Manager: Manage and organize tests

Test Browser

Test &
Verification

2121

Test Manager: View and debug test results

Test Results

Test &
Verification

2222

Authoring Test Cases:
Test &

Verification

2323

Adding more test cases for better coverage:
Test &

Verification

2424

Main Model

Test Harness

Component

under test

▪ Isolate Component Under Test

▪ Synchronized, simulation test

environment

Test

Harnesses

Simulink Test

Develop, manage, and execute simulation-based tests

▪ Author, manage, organize tests

▪ Execute simulation, equivalence

and baseline tests

▪ Review, export, report

Test

Manager

Test Browser

Test Results

Reports

▪ Specify test inputs, expected

outputs, and tolerances

▪ Construct complex test

sequences and assessments

Test

Authoring

Signal Editor

Temporal Assessments

Test Sequence

Time-Series Data

ExamplesExamplesExamples

Test &
Verification

https://www.mathworks.com/help/sltest/ug/access-model-data-wirelessly-by-using-observers.html#mw_13c10dba-5727-47ad-8ab7-ad9f37a5bf6e
https://www.mathworks.com/help/sltest/examples.html?category=test-execution&s_tid=CRUX_topnav
https://www.mathworks.com/help/sltest/examples.html?category=test-execution&s_tid=CRUX_topnav

2525

Simulink Coverage

Measure test coverage in models and generated code

•Measure test completeness

• Identify missing tests or

unintended functionality

Model

Coverage

Generated Code

Coverage

•Find untested generated code

•Map results from code to

model object

Highlighting and

Reporting

•View coverage results on diagrams

•Manage accumulated coverage

results

Examples Examples Examples

Test &
Verification

https://www.mathworks.com/help/slcoverage/gs/basic-operation-of-the-model-coverage-tool.html
https://www.mathworks.com/help/slcoverage/examples.html?category=collect-coverage-for-code&exampleproduct=all
https://www.mathworks.com/help/slcoverage/examples.html?category=analyze-coverage-and-view-results

2626

Simulink Design Verifier
Use formal methods to identify design errors

•Uncover hard to find

dead logic and design

flaws

Design Error

Detection

Test

Generation

•Automate test vector

generation to analyze

missing coverage

Requirements

Proving

•Prove formally design

meets requirements

Examples Examples Examples

Test &
Verification

https://www.mathworks.com/help/sldv/examples.html?category=check-for-bugs
https://www.mathworks.com/help/sltest/examples.html?category=check-test-coverage
https://www.mathworks.com/help/sldv/examples.html?category=requirements-verification

2727

✓ Modeling

&

Simulation

Code

Generation &

Code

Verification

✓ Test &

Validation

There are three key pieces to

Simulation and Model-Based Design

Model-Based Design

2828

Model-in-the-Loop (MIL)
Verify models using simulations

• Develop a model of the actual plant (hardware) in a simulation environment.

• Develop the controller model and verify if the controller can control the plant as per the

requirement.

• Test the controller logic on the simulated model of the plant.

Code Gen &
Verification

2929

Control Software testing: Model-in-the-Loop (MIL)

Inputs Control

System
Plant

Output

Code Gen &
Verification

3030

Automatic Code Generation:
Code Gen &
Verification

3131

Code Customization and Optimizations:

▪ Hardware Support Packages

▪ Code Replacement Libraries for

Custom libraries eg.

– ARM Cortex A Ne10

– Intel SSE, AVX

– ARM Cortex M CMSIS

▪ C Caller Block for external code

integration

▪ S-Functions for legacy code

▪ Organization wide Custom Libraries

via Code Replacement Libraries

Code Gen &
Verification

3232

Why use Static Analysis?

Hard to reach states,

Edge cases

Test cases

Design Space

✓ Identify hard to reach states, Unusual runtime

scenarios

✓ Apply consistent programming practices

✓ Run automated analysis early and often!

• No dependency of hardware

• No execution of the code

• No instrumentation

• No tests cases needed

Code Gen &
Verification

3333

Polyspace Analysis on the Embedded Software

System

Integration and

Test

SW

Implementation

System Design

System

Requirements
Continuous

System Care

Code level

security &

robustness

analysis

Secure code

generation &

deployment

▪ MISRA C

▪ CERT C, C++

▪ CWE

▪ TS 17961

Safe &Secure coding rules

and known vulnerabilities

Proof of robustness

and Run-Time Error

Detection

Code Generation Hand-Written Code

Code Gen &
Verification

3434

Launch Polyspace from Simulink
Code Gen &
Verification

3535

Traceability between Model and Code

▪ Clickable links

▪ Bidirectional

▪ Trace requirements

to code

Code Gen &
Verification

3636

Polyspace Source Code Analysis Solutions

✓C

✓C++

✓Ada

hand-written

code

auto-generated

code

+

Method:

Formal Method based analysis

without need for code execution

→Abstract Interpretation

Goal:

✓ Find Runtime Errors (division by zero,

overflows, etc.)

✓ Find Coding Standards violations

✓ Provide code metrics

✓ Prove that all the software we rely

on is safe and secure

Code Gen &
Verification

3737

Formal Methods for Functional Safety

DO-333 Formal Methods Supplement

Sound analysis means that the method never asserts a property to be

true when it may not be true” : False Negative

Source: DO-333 Supplement on Formal Methods

Code Gen &
Verification

3838

Proving
Absence
of Critical
Defects &
Vulnerabilities
(dozens)

Defect &
Vulnerability
Checkers
(hundreds)

Coding
Standards,
Cybersecurity

Guidelines

Code
Metrics

Code Prover
→Fully Trusted Components:

• Robust, Safe, Secure

• Proven free of critical runtime

defects and vulnerabilities

• Additional credits for standards.

Bug Finder
→High Quality, Secure, Compliant Code:

• Measurable, Maintainable, Consistent

• Very few defects or vulnerabilities

• Credits for functional safety,

cybersecurity standards.

Polyspace Products
Code Gen &
Verification

3939Source: Embedded Systems Security, D. Papp et al, IEEE Conf. Sec. Privacy & Trust, 2015.

Common Cyber Attack Scenarios

Unknowns + lack of robustness => Anything can happen (beyond spec)

Code Gen &
Verification

4040

Follow secure guidelines and practices as you code

This can be

hacked…

Immediate

feedback

& learning

Polyspace has 99.4% coverage of secure coding guideline CERT-C(++),

identifies common programming errors (CWE) and computes complexity metrics

Code Gen &
Verification

4141

Robustness “Testing” with Guarantees

Fast, misses no bugs and automatic

proof
▪ Sound static analysis with proof

– Based on analysis, not execution

– Requires no test harness

– Considers all inputs & states

▪ Boundary values, race conditions,

sufficient checking of user inputs…?

Proving Absence

of Critical Defects &

Vulnerabilities

• Assert

• Buffer overrun

• Divide by zero

• Uninitialised variable

• Unreachable code

• Stack Usage

• Data Flow

• Numerical

• Concurrent access

• Etc..

Code Gen &
Verification

4242

Prove absence of vulnerabilities

Static Application Security Testing (SAST)

Enforce secure coding rules

& best practices

Considers all inputs & all program states

Code Gen &
Verification

4343

When to use Polyspace Product?

Embedded Software Development Integrated during the entire SDLC

Developer Branch

Code Review

Integration

Final VnV

Generated code from high-level modeling language

Code Gen &
Verification

4444

DevOps Workflow for Code Analysis

Source Code

Repository

Developer

Developer

Developer

1 Code Check-ins

Polyspace

Server

(Analysis

Engine)

2

Initiate

Publish

Results

Polyspace

Access

(Results

Database)

3

Web Browsers

Team Lead/

Manager

QA

Engineer

4 Online Review

Full integration checks

(catch remaining defects)

G
a

te
k
e

e
p

e
r

Fast checks in IDE

(catch most defects)

Less

rejects

Fast checks on model

(catch most defects)

Code Gen &
Verification

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwii8oS_-6PdAhXtQ98KHWfLC5YQjRx6BAgBEAU&url=https://marketplace.topdesk.com/jira-integration-by-topdesk/&psig=AOvVaw2h05vc4-AL-Ent-a3BfyIs&ust=1536240344328142

4545

Compliance to Industry Standards-IEC Certification Kit

Software

Firmware

Model-Based Design
(MATLAB, Simulink, Stateflow)

Polyspace
C, C++

C, C++

Model-Based V&V tools

Code Generation tools

C, C++, AUTOSAR

• ISO 26262:2018 (ASIL A-D)

• IEC 61508:2010 (SIL 1-4)

• EN 50128:2011 (SIL 0-4)

• EN 50657:2017 (SIL 0-4)

• ISO 25119:2018 (SRL B,1-3)

• IEC 62304:2015 (Class A-C)

IEC Certification Kit

Code Gen &
Verification

4646

Compliance to Industry Standards- DO Qualification Kit

Software

Firmware

Model-Based Design
(MATLAB, Simulink, Stateflow)

Polyspace
C, C++

C, C++

Model-Based V&V tools

Code Generation tools

DO-178C DAL A-E

DO-278A AL1-6

DO Qualification Kit

Code Gen &
Verification

4747

DO Qualification Kit Overview

DO-178C

D.A.L A-E

Supported

Standards DO-278A

A.L. 1-6

Airborne Software Ground-based and

Space-based Software

DO-331
Supported

Supplements DO-332

Model-Based Object-Oriented

DO-333

Formal Methods

Code Gen &
Verification

4848

DO-178C Source Code Considerations
→ Reduce manual code inspection

Source Code Verification per 6.3.4

Source code is verifiable O

Source code conforms to standards O

Source code is accurate and consistent O

Indicates item is covered by PolyspaceO

Code Gen &
Verification

4949

DO-178C Robustness Verification Considerations (High/Low Level)
→ Reduce robustness testing

Abnormal Inputs and Conditions per FM.6.7.b

Real and integer variables O

System initialization during abnormal conditions O

Possible failure modes of incoming data O

Loops with computed loop variables O

Protection mechanisms for exceeding frame times O

Time-related function overflows O

State transitions not allowed by requirements O

Verification of Software Integrity per FM.6.7.c

Incorrect initialization of variables and constants O

Parameter passing errors O

Data corruption, especially global O

Inadequate end-to-end numerical resolution O

Incorrect sequencing of events and operations O

Indicates item is covered by Polyspace Code Prover O

Code Gen &
Verification

5050

Polyspace used across Industries(remake)

NASA Volvo

Miele
Miracor

LEONARDO

Code Gen &
Verification

5151

Software-in-the-Loop (SIL)
Verify compiled object code matches simulation

Non-real-time execution:

synchronized with simulation • Verify numerical equivalence

• Assess execution time

• Collect code coverage

• Create certification artifacts

Communication

Gateway

• Software-in-the-Loop (SIL) No

additional tools / hardware required

Code Gen &
Verification

5252

Control Software testing: Software-in-the-Loop (SIL)

Inputs
Control

System
Plant

Output

Code Gen &
Verification

5353

Software-In-Loop Testing:
Code Gen &
Verification

5454

Processor-in-the-Loop (PIL)
Verify compiled object code matches simulation

Non-real-time execution:

synchronized with simulation • Verify numerical equivalence

• Assess execution time

• Collect code coverage

• Create certification artifacts

Communication

Gateway

• Processor-in-the-Loop (SIL) for

testing on production hardware

Code Gen &
Verification

5555

Generate processor executables: Code Gen &
Verification

5656

Control Software testing: Processor-in-the-Loop (PIL)

Inputs
Control

System
Plant

Output

Code Gen &
Verification

5757

Control Software testing: Processor-in-the-Loop (PIL)
Code Gen &
Verification

5858

✓ Modeling

&

Simulation

✓ Code

Generation &

Code

Verification

✓ Test &

Validation

There are three key pieces to

Simulation and Model-Based Design

Model-Based Design

5959

DESIGN

Environment Models

Physical Components

Algorithms

RESEARCH REQUIREMENTS

IMPLEMENTATION

Analog

Hardware
MCU DSP FPGA ASIC

SPICEVHDL, VerilogC, C++

INTEGRATION

T
E

S
T

 &
 V

E
R

IF
IC

A
T

IO
N

Quantifiable benefits of Model-Based Design

“Front-loaded development with
Model-Based Design enables us to
shorten development cycles and
minimize rework, which allows us
to deliver products earlier than our
competitors.”
Dr. Hisahiro Ito, Asst. GM.

System models reused across 54 products
worldwide. “Once we had moved to Model-
Based Design, we were able to use the same
core system in many different vehicles by
simply calibrating parameters such as the
vehicle dimensions and then re-generating
production code.”
Johan Hägnander, GM Engineering Europe

Model-Based Design enabled
Continental to verify our design in-
vehicle earlier, eliminating six months
of hardware development and one
prototype build. Verification time
was cut by up to 50 percent. 90
percent of application automatically
coded.
Thomas Ehl, Continental

“We use our system design model in
Simulink for ARP4754 to establish stable,
objective requirements. We save time by
using the model as the basis for our
software design model for DO-178—
from which we generate flight code—
and reusing validation tests for software
verification.”
Ronald Blanrue, Airbus Helicopters

6060

6161

Model Based Design and DevOps

Submit
Developers &

Test Authors

Development

Verify

Continuous

Integration

Version

Control

Monitor Review

T
ri
g

g
e

r

& many more…

6262

INTEGRATION

IMPLEMENTATION

Model-Based Design Integrated Process

ARCHITECTURE & DESIGN

T
E

S
T

 &
 V

E
R

IF
IC

A
T

IO
N

REQUIREMENTS

CPU DSP

C, C++

Environment Models

Physical Components

Algorithms

TEST

SYSTEM

• System

Composer

• Simulink

• Stateflow

• MATLAB

• Embedded

Coder

• Requirements

Toolbox

• Simulink Check

• Simulink Test

• Simulink Coverage

• Simulink Design Verifier

• Simulink Report Generator

• Simulink Code Inspector

• Polyspace Bug Finder

• Polyspace Code Prover

• Simulink Real-Time

6363

Model Based Design Verification Workflow

Requirements Capture &

Traceability

Requirements Toolbox

Verify Conformance

to Standards

Simulink Check

Model and Code

Coverage Analysis

Simulink Coverage

Equivalence Testing

Simulink Test

Formal Verification

Simulink Design

Verifier

Test Generation

Simulink Design

Verifier

Functional Testing

Simulink Test

Static Code Analysis

Polyspace Bug Finder,

Code Prover

✓ Modeling

&

Simulation

✓ Code

Generation &

Verification

✓ Test &

Validation

6464

Industry Compliance: Certification
for ISO 26262, IEC 61508, DO and related standards

▪ Qualify tools, including

– Embedded Coder

– Simulink Check

– Simulink Coverage

– Simulink Design Verifier

– Simulink Test

– Polyspace Bug Finder

– Polyspace Code Prover

▪ Support standards, including

– ISO 26262 (Automotive)

– DO178C (Aero)

– IEC 61508 (Industrial)

– EN 50128 (Rail)

– IEC 62304 (Medical)

KOSTAL Asia R&D Center Receives ISO 26262 ASIL

D Certification for Automotive Software

Developed with Model-Based Design

6565

Data gathered by Hewlett Packard referred by XB in 2017

https://xbsoftware.com/blog/why-should-testing-start-early-software-project-development/

Invalid Requirements

Start Here

6666

Key Takeaways

Accelerating Production of Industry-Compliant Embedded Software Using

Model-Based Design

✓ Simulate and test your system early and often

✓ Validate your design with physical models

✓ Generate and deploy directly to your embedded
system

✓ Verify the generated code for any Run-Time
issues and comply to Coding Standards

✓ Maintain a digital thread with traceability
throughout and comply to industry standards

6767

Relevant Training Classes

▪ Simulink Fundamentals – introduction to designing models using Simulink

▪ Simulink Model Management and Architecture – Requirements Toolbox, Simulink Projects,
Architectural Choices, Data Management, Simulink Report Generator

▪ Simulation-Based Testing with Simulink – includes Simulink Test

▪ Design Verification with Simulink – Simulink Design Verifier

▪ Embedded Coder for Production Code Generation – generating and using code from Simulink
models

▪ Polyspace for C/C++ Code Verification – static analysis of hand code and automatically-
generated code

▪ Applying Model-Based Design for ISO 26262 (available upon request)

https://www.mathworks.com/learn/training/simulink-fundamentals.html
https://www.mathworks.com/training-schedule/simulink-model-management-and-architecture.html
https://www.mathworks.com/training-schedule/simulation-based-testing-with-simulink.html
https://www.mathworks.com/training-schedule/design-verification-with-simulink?s_tid=srchtitle
https://www.mathworks.com/training-schedule/embedded-coder-for-production-code-generation-two-day.html
https://www.mathworks.com/training-schedule/polyspace-for-c-cpp-code-verification.html

6868

Learn More

Visit MathWorks Verification, Validation and Test Solution Page:

mathworks.com/solutions/verification-validation.html

https://www.mathworks.com/solutions/verification-validation.html

69

Share the EXPO experience

#MATLABEXPO

https://www.linkedin.com/in/vamshi-

krishna-kumbham-91908622/

https://www.linkedin.com/in/vaishnavi-r-

a819497a/

https://www.linkedin.com/in/vamshi-krishna-kumbham-91908622/
https://www.linkedin.com/in/vamshi-krishna-kumbham-91908622/
https://www.linkedin.com/in/vaishnavi-r-a819497a/
https://www.linkedin.com/in/vaishnavi-r-a819497a/

70

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be

trademarks or registered trademarks of their respective holders.

Thank you

	Default Section
	Slide 0

	Intro
	Slide 1
	Slide 2: Shift-Left Verification
	Slide 3: Traditional software development vs. Model-Based Design
	Slide 4: Simulink is for Simulation of Every Project:
	Slide 5: Adoption of Model-Based Design across Industries

	Intro into MBD
	Slide 6: Concept to Deployment:
	Slide 7: Developing Control Software for Power Window
	Slide 8: What we learn today Accelerating Production of Embedded Software

	PowerWindowModel
	Slide 9: There are three key pieces to
	Slide 10: System Requirements:
	Slide 11: Requirements and Model Linking:
	Slide 12: Author, link, and validate for designs and tests
	Slide 13: Requirements Toolbox Author, link, and validate requirements for designs and tests

	Modeling_Simulation
	Slide 14: Modelling Software Requirements:
	Slide 15: Create Interactive model for Simulation Analysis:
	Slide 16: Run Model Advisor Checks:
	Slide 17: Simulink Check Automate verification and correct models to improve design
	Slide 18: There are three key pieces to

	Test_Verification
	Slide 19: Systematic Functional Testing with Simulink Test
	Slide 20: Test Manager: Manage and organize tests
	Slide 21: Test Manager: View and debug test results
	Slide 22: Authoring Test Cases:
	Slide 23: Adding more test cases for better coverage:
	Slide 24
	Slide 25: Simulink Coverage Measure test coverage in models and generated code
	Slide 26: Simulink Design Verifier Use formal methods to identify design errors
	Slide 27: There are three key pieces to

	CodeGen_Verification
	Slide 28: Model-in-the-Loop (MIL) Verify models using simulations
	Slide 29: Control Software testing: Model-in-the-Loop (MIL)
	Slide 30
	Slide 31: Code Customization and Optimizations:

	Polyspace
	Slide 32: Why use Static Analysis?
	Slide 33: Polyspace Analysis on the Embedded Software
	Slide 34: Launch Polyspace from Simulink
	Slide 35: Traceability between Model and Code
	Slide 36
	Slide 37: Formal Methods for Functional Safety
	Slide 38: Polyspace Products
	Slide 39: Common Cyber Attack Scenarios
	Slide 40: Follow secure guidelines and practices as you code
	Slide 41: Robustness “Testing” with Guarantees
	Slide 42: Static Application Security Testing (SAST)
	Slide 43
	Slide 44: DevOps Workflow for Code Analysis
	Slide 45: Compliance to Industry Standards-IEC Certification Kit
	Slide 46: Compliance to Industry Standards- DO Qualification Kit
	Slide 47: DO Qualification Kit Overview
	Slide 48: DO-178C Source Code Considerations Reduce manual code inspection
	Slide 49: DO-178C Robustness Verification Considerations (High/Low Level) Reduce robustness testing
	Slide 50: Polyspace used across Industries(remake)

	SIL_PIL_Test
	Slide 51: Software-in-the-Loop (SIL) Verify compiled object code matches simulation
	Slide 52
	Slide 53: Software-In-Loop Testing:
	Slide 54: Processor-in-the-Loop (PIL) Verify compiled object code matches simulation
	Slide 55: Generate processor executables:
	Slide 56: Control Software testing: Processor-in-the-Loop (PIL)
	Slide 57: Control Software testing: Processor-in-the-Loop (PIL)
	Slide 58: There are three key pieces to
	Slide 59: Quantifiable benefits of Model-Based Design
	Slide 60

	Final
	Slide 61: Model Based Design and DevOps
	Slide 62: Model-Based Design Integrated Process
	Slide 63: Model Based Design Verification Workflow
	Slide 64: Industry Compliance: Certification for ISO 26262, IEC 61508, DO and related standards
	Slide 65
	Slide 66: Key Takeaways Accelerating Production of Industry-Compliant Embedded Software Using Model-Based Design
	Slide 67: Relevant Training Classes
	Slide 68: Learn More
	Slide 69
	Slide 70

