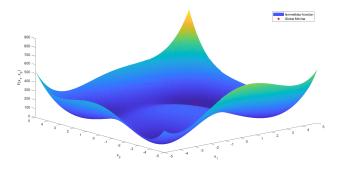
Effective Classroom Teaching of Optimal Control and Optimization using MATLAB

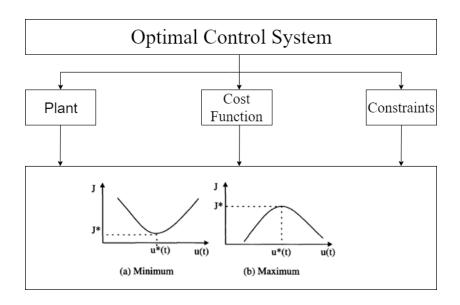
Saket Adhau, Sayli Patil, Dayaram Sonawane

College of Engineering, Pune, India

MATLAB EXPO 2019

March 23, 2019

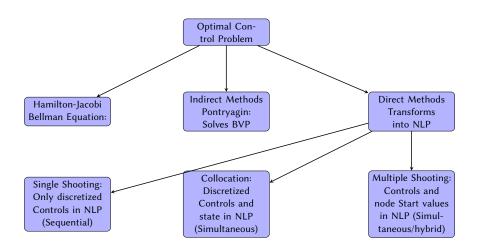



Saket Adhau (COEP) March 23, 2019

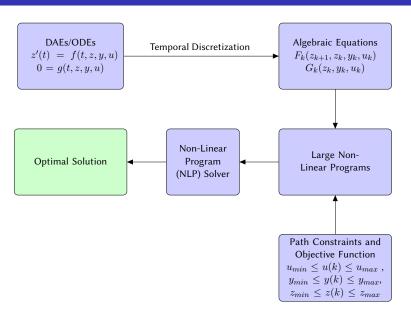
Optimal Control

Finding values of the variables that optimize (minimize or maximize)
 the objective function while satisfying the constraints

Ingredients of Optimal Control Problem



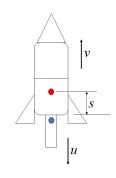
Methods to Solve OCP


Analytical
Methods Pontryagins
maximum principle

Numerical Methods

Numerical Methods to Solve OCP

Optimal Control Problem Flow Chart

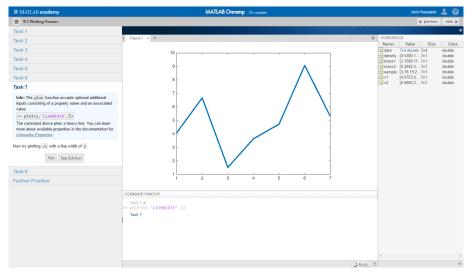


Example Problem: Time Optimal Rocket Problem (Time Optimization Problem)

$$\min_{U} \quad t_f$$

Subject to

$$\begin{split} \dot{s(t)} &= v(t) \; ; \dot{v(t)} = \frac{(u(t) - 0.02 * v(t)^2)}{m(t)} \\ \dot{m(t)} &= -0.01 * u(t)^2 \; ; \; t \in \begin{bmatrix} 0 & t \end{bmatrix} \\ \dot{s(0)} &= 0; \; v(0) = 0; \; m(0) = 1; \\ \dot{s(t_f)} &= 10; \; v(t_f) = 0 \end{split}$$



Bounds

$$-0.1 \le v \le 1.7$$
; $-1.1 \le u \le 1.1$; $5 \le T \le 15$

Approach: MATLAB and Simulink Onramp

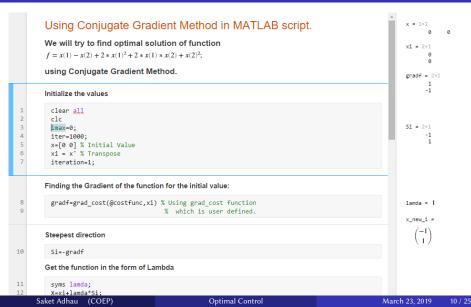
To provide a brief introduction to the MATLAB language and to give students hands-on MATLAB experience via the use of an integrated, web-based version of MATLAB, as shown below.

Approach: MATLAB and Simulink Onramp Report

Progress Report

Name: Sayli Patil

Course: MATLAB Onramp


Progress: 100% complete (as of 17-Dec-2018)

Chapters

- 1. Course Overview 100%
- 2. Commands 100%
- 3. Vectors and Matrices 100%
- 4. Importing Data 100%
- 5. Indexing into and Modifying Arrays 100%
- 6. Array Calculations 100%
- 7. Calling Functions 100%
- 8. Obtaining Help 100%
- 9. Plotting Data 100%
- 10. Review Problems ~100%
- 11. MATLAB Scripts 100%

12. Logical Arrays 100%
13. Programming 100%
14. Final Project 100%
15. Survey 100%

Classroom teaching approach: MATLAB Live Script: Interactive approach

Check the condition if the solution is optimal

16

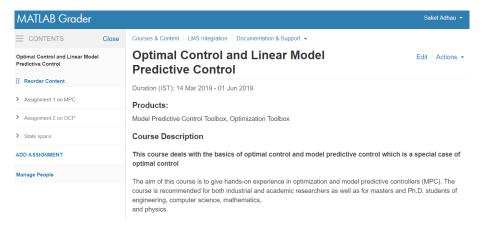
18

19

20

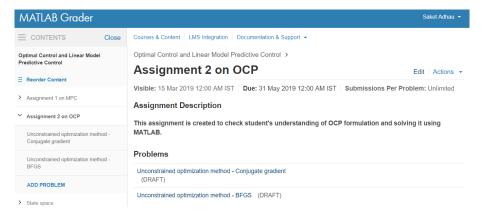
```
x_new_i=xi+ lamda*Si
delf_i= grad_cost(@costfunc,x_new_i);
if delf_i==0
fprintf('Solution is optimum');
fprintf('\n');
fprintf('Total Number of Iterations = %d\n', imax );
return;
end
```

Running the loop for finding the Optimal Solution


```
for i=1:iter
24
         gradf=grad cost(@costfunc.x new i);
         gradf old=grad cost(@costfunc.xi);
         Si=(-gradf)+Si*((gradf')*(gradf)*(inv((gradf old')*(gradf old))));
         syms lamda;
28
         L=x new i+lamda*Si;
         f=costfunc(L);
30
         K=diff(f):
31
         lamda=solve(K,lamda);
         x new=x new i+ lamda*Si;
         delf i= grad cost(@costfunc.x new);
34
         xi=x new i;
         if delf i==0
36
             fprintf('Solution is optimum');
         break:
38
         end
39
         fval old=costfunc(x new i);
40
         fval new=costfunc(x new);
```

Solution is optimum

Teaching Optimal Control using Live Script


```
Check for stoping criterion
41
         tol 1=abs((fval new-fval old)/fval old);
         if(tol 1<1e-6)
          break;
44
          end
45
         x_new_i=x_new;
46
        Printing the final values and number of iterations
         imax=i+iteration :
          fprintf('\n');
         fprintf('Solution by ConjugateGradient Method \n');
          fprintf('\n'):
         fprintf('Total Number of Iterations = %d\n', imax )
         lamda
          x new
         fval=costfunc(x new)
```

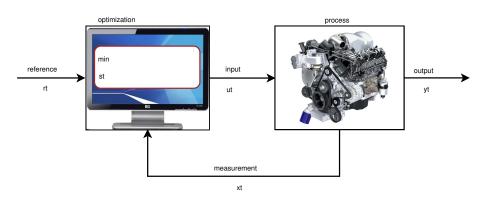
Assessing the students using MATLAB Grader

Saket Adhau (COEP) Optimal Control March 23, 2019 13 /

Assessing the students using MATLAB Grader

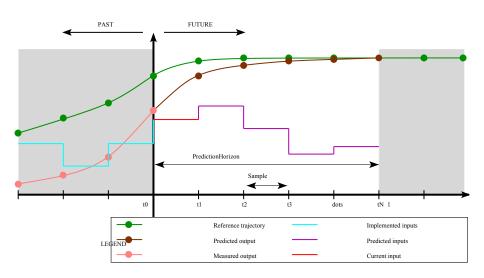
Saket Adhau (COEP) Optimal Control March 23, 2019 14 / 25

Assessing the students using MATLAB Grader: Report



Case Study:

- We have a class of 20 students opting for Process Modeling and Optimization.
- As an instructor, it is one challenging task to teach students MATLAB based coding interactively and assessing them individually.
- MATLAB has made this task easier than ever, by introducing MATLAB Live script and MATLAB Grader.


Saket Adhau (COEP) Optimal Control March 23, 2019 16 / 25

Optimal Control Problem leads to Model Predictive Control (MPC)

Use a dynamical model of the process to predict its future evolution and choose the "best" control action

Receding Horizon Implementation

Formulating the state space model for MPC

Create a state space model of the plant and set some of the optional model properties.

The State Space model for DC Motor is described as,

$$\begin{bmatrix} \vdots \\ i_a(t) \\ \omega(t) \\ \theta(t) \end{bmatrix} = \begin{bmatrix} \frac{-R_a}{L_a} & \frac{-K_b}{L_a} \omega(t) & 0 \\ \frac{-K_t}{J} i_a & \frac{-f}{J} \omega(t) & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} i_a(t) \\ \omega(t) \\ \theta(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{L_a} \\ 0 \\ 0 \end{bmatrix}$$

$$y(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i_a(t) \\ \omega(t) \\ \theta(t) \end{bmatrix}$$

19 / 25

Define the state space model in matlab script.

```
A = [-Ra/La,-km/La;km/J,-fm/J]

A = 2×2

10<sup>3</sup> ×

-7.2414 -0.0354

1.0524 -0.0000

B = [1/La;0]
```

B = 2×1 862.0690

Create Controller

Create a model predictive controller with a sample time, of 0.0001 second, and with all other properties at their default values.

```
Ts = 0.001;

MPCobj = mpc(motor,Ts);

--->Assuming unspecified output signals are measured outputs.
-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.0000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
```

Display the controller properties in the Command Window.

```
display(MPCobj)
```

```
MPC object (created on 22-Mar-2019 16:22:13):

Sampling time: 0.001 (seconds)
Prediction Horizon: 0

Control Horizon: 2

Plant Model:

1 manipulated variable(s) --> 2 states | --> 2 measured output(s)

0 measured disturbance(s) --> 1 inputs | --> 0 unmeasured output(s)

0 unmeasured disturbance(s) --> 2 outputs

Disturbance and Noise Models:

Output disturbance model: default (type "getoudist(MPCobj)" for details)

Measurement noise model default (unity main after scaling)
```

20 / 25

View and Modify Controller Properties

Display a list of the controller properties and their current values.

get(MPCobj)

```
Ts: 0.001
PredictionHorizon (P): 10
ControlHorizon (C): 2
Model: [1x1 struct]
ManipulatedVariables (MV): [1x1 struct]
OutputVariables (OV): [1x2 struct]
DisturbanceVariables (DV): []
Weights (MV): [1x1 struct]
Optimizer: [1x1 struct]
Notes: {}
UserData: []
History: 22-Mar-2020 16:22:13
```

The controller is set with default properties, we will modify them according to our purpose.

```
MPCobj.PredictionHorizon = 10;
MPCobj.ControlHorizon = 5;
```

By default, the controller has no constraints on manipulated variables and output variables. Set co

```
MPCobj.MV.Min = 0;
MPCobj.MV.Max = 18;
```

Modify the MPC Properties.

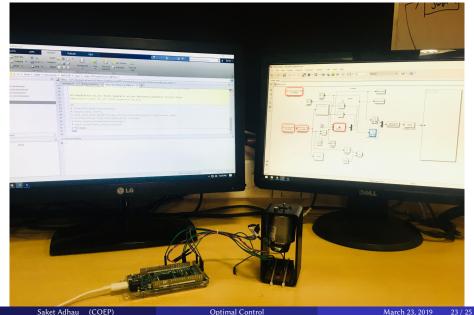
Weights on inputs and outputs state variables.

Simulating the controller

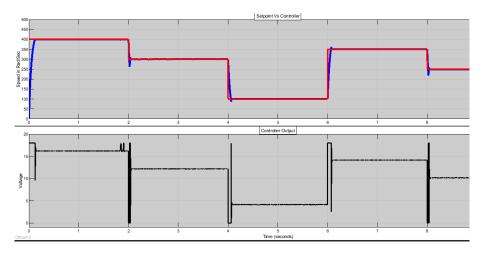
Time for running the simulation, (10000 control intervals)

```
T = 10000;
```

Specify setpoints of 0 and 300 for the Current and the Speed respectively. The setpoint for the Current is ignored because


```
r = [0 \ 0 \ ; \ 0 \ 300]
 r = 2 \times 2
sim(MPCobj,T,r)
```

- -->Converting model to discrete time.
- -->Assuming output disturbance added to measured output channel #2 is integrated white noise.
- -->Assuming output disturbance added to measured output channel #1 is integrated white noise.
- -->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.



22 / 25

Live Demo using Simulink and Arduino

Live Demo using Simulink and Arduino

24 / 25

Live Demo using Simulink and Arduino

The END